抽象的生物探测可以发现具有有趣的生态特征和有价值的生物技术特征的新酵母菌菌株和物种,例如将不同的碳源从工业侧转化为生物蛋白酶UCT的能力。在这项研究中,我们在热带西非进行了未靶向的酵母菌生物镜头,收集了1,996株分离株,并在70种不同的环境中确定了它们的生长。该系列包含许多分离株,具有吸收几种具有成本效益且可持续的碳和氮源的潜力,但我们专注于含有203种能够生长在乳糖上的菌株的特征,乳糖是乳制品的主要碳源,这是乳制品行业丰富的侧流奶酪乳清中的主要碳源。通过内部转录的间隔测序对乳糖映射菌株,我们从腹部和基本肌菌群中鉴定了30种不同的酵母菌物种,以前没有证明其中有一些在乳糖上生长,有些是新物种的候选者。观察到的生长和细胞外乳糖酶活性的生长和比率差异表明,酵母菌使用一系列不同的策略来代谢乳糖。值得注意的是,几种基质菌酵母,包括apiotirichum mycotoxinivorans,Papiliotrema laurentii和Moesziomyces natararcitus,积累了多达40%的细胞干重的脂质,证明它们可以将乳糖转化为重大生物含量的生物产物。
QAC 跨辖区灾害缓解计划草案向公众开放......https://www.myeasternshoremd.com/qa/news/qac-multi-jurisdictional-h...
在我们的研究中,我们通过整合DNA和生理特征来建立酵母菌和属描述的统一标准。具体而言,我们专注于序列身份(SI)和源自ITS1-2和LSU rDNA标记的组合的进化距离(ED),以及生理谱(DPP)之间的新参数。我们首先根据组合序列构建了一个系统发育树,并计算了树上所有酵母对之间的SI。酵母生理特征编码,并进行比较以构建生理模拟图。值得注意的是,生理树状图密切反映了遗传树状图。使用两个树状图,我们在Kazachstania和Starmerella进化枝内可视化和鉴定出强大的分类界限,并得到了RDNA系统发育树的进一步支持(1-4)。SI和ED之间的强相关性证实了我们基于DNA的方法的可靠性,而DPP的整合进一步增强了物种描述。,这些标准共同为分类划分提供了一个全面的框架,可推广到所有酵母菌和属。
生物转化将各种食物废物的生物转化为特定有价值的产品,例如单细胞蛋白(SCP)具有同时的潜力,可以通过获得经济食品和饲料产品来解决全球饮食蛋白缺乏症,并通过使用这些废物作为高营养价值生产的基质来获得环境污染物的大量缓解。因此,本研究旨在评估使用酿酒酵母和hansenii的酵母分离株生产SCP的可行性,并评估生成的SCP的蛋白质质量。结果表明,用于生长酵母菌株的马铃薯果皮培养基是生产SCP的最佳培养基,而酿酒酵母大于D. hansenii,用于生产更高量的生物质,粗蛋白,总氨基酸和核黄素。各种废物中各种特定有价值的SCP的生物转化代表了解决蛋白质缺乏问题并通过利用食物废物作为底物来减少环境污染物的有希望的前景。关键词:单细胞蛋白,食物废物,酵母液态发酵,生物量,氨基酸,核黄素。
摘要 在当今生态意识强烈的时代,消费者选择的食物反映了道德和环境问题,这增加了对有机产品的需求。生物防治是有机农业中可行的植物保护方法。冷冻干燥是一种长期保存微生物的技术,可确保其遗传稳定性和生存能力。为了减少冷冻干燥对细胞的损害,使用海藻糖和味精等冷冻保护剂。本研究评估了在冷冻干燥过程中添加这些物质对所选酵母分离物的生存能力、它们在番茄叶片上存活的能力以及保持对抗灰葡萄孢菌的拮抗特性的影响。在温室条件下,在冷冻干燥过程之前和之后,对酵母分离物 114/73(Wickerhamomyces anomalus EC Hansen)和 117/10(Naga nishia albidosimilis Vishniac & Kurtzman)在番茄植株上进行了测试,以了解其在叶片上定植的能力以及作为 B. cinerea 的预防和干预治疗。在体外评估了冷冻干燥后的酵母活力。海藻糖和谷氨酸钠均在冷冻干燥过程中提高了酵母活力。活力不是很高(117/10 从 30.33% 到 36.17%,114/73 从 10.67% 到 16.5%)。冷冻干燥后脱水的酵母用海藻糖和谷氨酸钠保护,在番茄叶片上显示的菌落数与冷冻干燥前相同。保护性治疗的效果取决于酵母分离物、冻干过程中使用的保护性物质、治疗时机(预防与干预)以及这些因素之间的相互作用。冷冻保存的分离物 117/10 的效果优于添加海藻糖或谷氨酸钠的 114/73,将疾病严重程度指数从 88.3%(对照)降低至 18.75 - 55.33%。预防性治疗比干预更有效。酵母分离物在冻干后对灰葡萄孢菌的叶片定殖能力和生物防治效果为可持续农业提供了有希望的解决方案。然而,可能需要进一步研究,以分析各种因素之间的相互作用并优化策略。
摘要 乙酸是木质纤维素预处理的副产物,是酵母发酵过程的强效抑制剂。较厚的酵母质膜 (PM) 预计会减缓未解离的乙酸向细胞中的被动扩散。分子动力学模拟表明,通过延长甘油磷脂 (GPL) 脂肪酰基链可以增加膜厚度。之前,我们成功改造了酿酒酵母以增加 GPL 脂肪酰基链长,但未能降低乙酸净吸收量。在这里,我们测试了改变二酰基甘油 (DAG) 的相对丰度是否会影响具有较长 GPL 酰基链的细胞 (DAG EN ) 中 PM 对乙酸的渗透性。为此,我们在 DAG EN 中表达了二酰基甘油激酶 α (DGKα)。由此产生的 DAG EN _Dgkα 菌株表现出恢复的 DAG 水平,在含有 13 g/L 乙酸的培养基中生长,并且积累的乙酸较少。乙酸应激和能量负担伴随着 DAG EN _Dgkα 细胞中葡萄糖摄取量的增加。与 DAG EN 相比,DAG EN _Dgkα 中几种膜脂的相对丰度因乙酸应激而发生变化。我们认为,增加能量供应和改变膜脂组成的能力可以弥补应激条件下 DAG EN _Dgkα 中高净乙酸摄取量的负面影响。
摘要:这项研究的目的是研究从智利沿海旱地的叶子叶子中提取的精油的化学成分和抗真菌活性。香精油的特征是气相色谱 - 质量光谱法。通过对五种临床重要性的念珠菌菌株进行微稀释测定,评估了抗真菌活性。Boldus精油的产率为0.32%,分析中鉴定出了十九种化合物,主要是阿辛迪尔(49.95%),o-甲基(13.45%)和桉树(9.71%)。所有测试的酵母菌菌株均对Boldus精油敏感,而C. guillermondi是最敏感的,最小抑制浓度(MIC)值为8 µg/ml,是氟康唑和伊曲康唑表现出的16 µg/ml的MIC值的16 µg/ml。这些结果表明,Boldus P. p. boldus精油可以自由形式或针对致病性酵母的制剂用作天然抗真菌剂。关键字:精油; Peumus boldus;念珠菌; assaridol; Candida Guillermondi Resumen:El objetivo de este este fue Resjosignar lacomposiciónquímicay la avipidad antifidadantifúngicadel aceite esencial esencial extraimialextrairídode hojas de hojas de peumus de peumus de peumus del secano del secano costostero costostero costosto de chile。el aceite esencial secaracterizóporcromatografíade as acoplada asepectrometríade Masas。la actividadantifúngicaseevaluóóunemanayodeMicrodiluciónfrentea cinco cepas de candida de clientanciaclínica。estos usparados sugieren que el aceite esencial de p. bolduspodría利用como como代理人antifúngico天然eN ema libre o en una una una unaformulaciónconta conta conta levaduraspatógenas。Boldus的精油以0.32%的产率获得,在其分析中,有19种化合物,主要是阿辛迪尔(49.95%),O-Cimeno(13.45%)和桉树(9.71%)。 div>所有分析的酵母菌菌株均对Boldus P. boldus的精油敏感,是最敏感的C. guillermondi,最小抑制浓度值(CIM)为8 µg/ml,比Fluconazole和Itchraconazole显示的16 µg/ml的CIM值低两倍。 div>关键字:精油; Peumus boldus;念珠菌 div>; assaridol;念珠菌。 div>
分析了五种酵母菌株,以生成由人工智能 (AI) 使用卷积神经网络或线性判别分析 (LDA) 确定的识别模型。通过向软件输入每个获取细胞的每个通道的形态特征来构建模型。我们结合了两个模型:一个基于明场特征,通过对模型预测的每个菌株的身份及其实际类别进行统计分析来验证;第二个使用 LDA 算法,并添加了自发荧光测量。计算出的“超参数”允许在分析混合种群时最大限度地分离不同的菌株。
酿酒酵母(通常称为芽酵母)是一种单细胞真核生物,用作研究广泛的生物学过程的模型,因为其简单,快速生长和基因操纵性。此外,它也是一种无价的工业微生物,用于生产面包,啤酒和药品。为了进一步使该器官适合各种应用,全球一组科学家启动了合成酵母基因组项目(SC2.0项目),以通过设计师染色体为其提供基因组大修。1通过实施众多故意修改,SC2.0项目试图调查与染色体特性,基因组组织,基因组功能和进化有关的许多原本具有挑战性和基本问题。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。