全球范围内,II 型糖尿病 (T2DM) 患病率的上升与食用低纤维“西方饮食”有关。这些人的特征性代谢参数包括胰岛素抵抗、高空腹和餐后血糖以及低度全身炎症。这些人群的肠道菌群组成发生了显著变化,表明饮食、菌群和疾病之间存在因果关系。研究表明,摄入膳食纤维可以缓解这些变化,并改善代谢疾病患者的血糖参数。我们之前报告称,酵母 β-葡聚糖(酵母 β-1,3/1,6-D-葡聚糖;Wellmune)补充剂可改善小鼠模型中的高胰岛素血症和胰岛素抵抗。在此,我们对 T2DM 患者进行了一项随机、安慰剂对照、双臂膳食纤维 I 期探索性干预研究。主要结果测量是菌群组成的改变,而次要结果测量包括血糖控制标志物、炎症以及代谢组学。患者每天补充 2 · 5g 麦芽糊精(安慰剂)或酵母 β -1,3/1,6-D- 葡聚糖(治疗)。服用 8 周后,与安慰剂麦芽糊精相比,酵母 β -葡聚糖 (Wellmune) 降低了胰岛素抵抗。补充 4 周 β -葡聚糖后,TNF α 显著降低。8 周后,与安慰剂相比,治疗组的几种胆汁酸粪便浓度显著升高。这些胆汁酸包括牛磺熊去氧胆酸,此前已证明它可以改善血糖控制并降低胰岛素抵抗。有趣的是,酵母 β -葡聚糖的降血糖和抗炎作用与粪便微生物群组成或短链脂肪酸水平的任何变化无关。我们的研究结果强调了酵母 β -葡聚糖降低 2 型糖尿病患者胰岛素抵抗的潜力。
尽管转座因子之间的同源重组可通过促进染色体重排来驱动酵母基因组进化,但其潜在机制的细节尚未完全阐明。在酿酒酵母基因组中,最常见的转座子类别是逆转录转座子 Ty1。在本文中,我们探讨了 Cas9 诱导的针对 Ty1 因子的双链断裂 (DSB) 如何在该酵母物种中产生基因组改变。在 Cas9 诱导后,我们观察到染色体重排(例如缺失、重复和易位)显著增多。此外,我们发现有丝分裂重组率升高,导致杂合性丧失。通过 Southern 分析结合短读和长读 DNA 测序,我们揭示了逆转录转座子中诱导的重组的重要特征。几乎所有的染色体重排都反映了 Ty1 元件处 DSB 的修复,这是通过非等位基因同源重组实现的;成簇的 Ty 元件是染色体重排的热点。相反,大部分(约四分之三)等位基因有丝分裂重组事件在独特序列中存在断点。我们的分析表明,后一些事件反映了 Ty 元件中产生的断端的广泛处理,这些断端延伸到独特序列中,从而导致断裂诱导的复制。最后,我们发现单倍体和二倍体菌株对用于修复双链 DNA 断裂的途径有不同的偏好。我们的研究结果表明,逆转录转座子中的 DNA 损伤在推动基因组进化方面的重要性。
抽象引入酵母β-葡聚糖(YBG)通过激活巨噬细胞增强免疫系统而被认可,这是一种关键的防御机制。鉴于上呼吸道感染(URTI)对生产力和医疗保健成本的全球患病率和影响,YBG已将有望作为反复呼吸道感染的潜在治疗和预防策略。然而,关于YBG在较低剂量下与URTI,疲劳,免疫反应和它们如何影响肠道菌群组成的不确定性有关的YBG的疗效知之甚少。方法和分析这个为期12周的随机,双盲,安慰剂控制,平行组临床试验旨在评估YBG 1,3/1,6对呼吸道感染,疲劳,免疫标记和肠道健康的疗效。这项研究涉及198名18-59岁年龄的成年人,其应力量表10(评分14-26)和患者健康问卷9(得分≥9)进行了评估;在过去的6个月中,使用杰克逊冷量表评估了普通感冒的症状。这些参与者将被随机分为三组,以120 mg,204 mg或安慰剂接收YBG 1,3/1,6。结果措施包括呼吸道感染症状,疲劳,情绪状态和使用威斯康星州上呼吸道症状量表评估的生活质量,多维疲劳清单,情绪状态的概况和Short Form Form 36健康调查调查问卷。此外,还将进行全血分析和免疫,炎症和氧化应激生物标志物的评估。次要结果包括使用16S rRNA测序的粪便样品进行肠道菌群分析。伦理和传播该研究的研究方案已由马来西亚大学研究伦理委员会审查和批准(UKM/PPI/111/8/JEP-2023-211)。这些发现将被传播给参与者,医疗保健专业人员
摘要:来自自然来源的热耐酵母在行业中引起了很多关注,因为它们稳健并且可以忍受几种压力。将天然酵母菌菌株用作生产异源蛋白质的宿主,选择转化的细胞并维持重组质粒需要遗传标记。酿酒酵母菌株C3253从泰国葡萄中分离出来的酵母菌菌株C3253先前被描述为耐热酵母,可以耐受多重应力。这项研究旨在通过CRISPR/CAS9技术构建URA 3的营养突变体,然后可以通过酵母质粒和URA 3可选标记来转化。ura 3的酵母菌菌株的基因通过插入含有含量1启动子的Cas9基因的质粒来拆除,这是由SNR 52启动子控制的RNA 52启动子CRISPR/CAS9的指南RNA表达盒,KAN MX4的特定目标位点,KAN MX4可选择的标记物,可选择的标记和双链寡核油核纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维纤维修复的修复温度(Donor)(Donor)。从观察到各种选择性培养基中的尿中需要菌落,并通过在目标区域进行DNA测序确认,结果表明,天然酵母菌菌株中的URA 3基因被完全淘汰。突变克隆保留了多应力耐受性的特征,即热,氧化,渗透,乙醇和细胞壁应力。这项研究表明,CRISPR/CAS9技术可有效地用于自然酵母菌菌株的敲除基因。
DNA双螺旋结构的发现以及DNA测序的最新进展为基因组的合成提供了动力。2 – 4合成生物学家不再满足于仅仅复制自然基因组,而是雄心勃勃地想要创建新版本的基因组。5 – 19计算机辅助模拟允许重新设计具有特定功能的基因组,并且遵循基因组设计的最基本原则,即保持细胞活力7,11,12,20,可以引入自定义遗传特征以增加基因组的灵活性。例如,可以实现重新编码、引入重组位点和水印序列9以及删除重复序列和不稳定元素。 12,20 新设计的基因组序列被分层划分为寡核苷酸 7,9,21,然后在体内和体外组装成“短” 22,23 “中” 24 – 26 和“长” 13,20 DNA 片段。最后,将化学合成的 DNA 移植到细菌或酵母细胞中,取代天然遗传物质。11,27
酵母人工染色体(YAC)为隔离和映射哺乳动物染色体的区域提供了强大的工具。,我们通过通过同源重组将救援质粒插入YAC载体中的DNA片段开发了一种快速有效的方法来分离代表YAC克隆极端的DNA片段。构建了两个救援载体,其中包含一个酵母Lys2可选基因,一个细菌的复制起源,一个抗生素耐药基因,一个包含多个限制位点的聚链链接和与PYAC4载体同源的片段。“终端克隆”程序涉及将救援载体转化为带有YAC克隆的酵母细胞,然后制备酵母DNA并转化为细菌细胞。所得质粒的长度最高20 kb,可用作杂交探针,作为直接DNA测序的模板,以及作为荧光原位杂交绘制的探针。这些向量适合从使用PYAC衍生载体构建的任何YAC中拯救端键。我们通过从人类YAC图书馆中拯救Yac-end片段来证明这些质粒的实用性。
比例4g糖7.5g新鲜酵母或2.1克干酵母150ml水70克麦面粉烧杯200ml玻璃棒5测量缸100ml或烧杯3水浴(冷,40°C,60°C)将面粉,糖和水混合在烧杯中,形成均匀的面团。2。将30毫升倒入测量缸作为对照混合物(在室温下)。3。在剩余的面团中添加新鲜或干酵母。4。用30毫升的酵母面团填充其余四个测量缸,并将其暴露于不同的温度条件:测量气缸1:在室温下无酵母的面团。测量气缸2:在室温下测量气缸处的酵母面团3:冷水浴中的酵母面团测量缸4:温水浴中的酵母面团(40°C)测量气缸5:热水浴中的酵母面团(60°C)
摘要:酿酒酵母作为一种公认安全 (GRAS) 真菌,已成为工业应用和基础研究中最广泛使用的底盘细胞之一。然而,由于其复杂的遗传背景和相互交织的代谢网络,仍然有许多障碍需要克服,以改善所需特性并成功地将基因型与表型联系起来。在此背景下,基因组编辑和进化技术在过去几十年中迅速发展,以促进快速产生定制特性以及精确确定调节生理功能的相关基因靶标,包括抗逆性、代谢途径优化和生物体适应性。定向基因组进化已成为一种多功能工具,使研究人员能够获得所需特性并研究日益复杂的现象。本文回顾了酿酒酵母定向基因组进化的发展,重点介绍了推动进化工程的不同技术。
DNA双螺旋结构的发现以及DNA测序的最新进展为基因组的合成提供了动力。2 – 4合成生物学家不再满足于仅仅复制自然基因组,而是雄心勃勃地想要创建新版本的基因组。5 – 19计算机辅助模拟允许重新设计具有特定功能的基因组,并且遵循基因组设计的最基本原则,即保持细胞活力7,11,12,20,可以引入自定义遗传特征以增加基因组的灵活性。例如,可以实现重新编码、引入重组位点和水印序列9以及删除重复序列和不稳定元素。 12,20 新设计的基因组序列被分层划分为寡核苷酸 7,9,21,然后在体内和体外组装成“短” 22,23 “中” 24 – 26 和“长” 13,20 DNA 片段。最后,将化学合成的 DNA 移植到细菌或酵母细胞中,取代天然遗传物质。11,27
1,美国加利福尼亚州斯坦福大学斯坦福大学生物学系| 2美国加利福尼亚州斯坦福大学斯坦福大学遗传学系| 3美国密歇根州安阿伯市密歇根大学医学院| 4美国科罗拉多州奥罗拉(Aurora)的科罗拉多州Anschutz大学医学校园生物化学与分子遗传学系| 5蜂窝和分子生物学,加利福尼亚州立大学,诺斯里奇,美国加利福尼亚州诺斯里奇| 6国际人类基因组研究实验室,墨西哥Querétaro的JuriquillaQuerétaro大学NacionalAutónomadeMéxico(UNAM)| 7美国加利福尼亚州斯坦福大学斯坦福大学地球系统科学系| 8 Biocontol和Molecular Ecology,Manaaki wherua - Landcare Research,Lincoln,新西兰| 9新西兰奥克兰大学奥克兰大学生物科学学院1,美国加利福尼亚州斯坦福大学斯坦福大学生物学系| 2美国加利福尼亚州斯坦福大学斯坦福大学遗传学系| 3美国密歇根州安阿伯市密歇根大学医学院| 4美国科罗拉多州奥罗拉(Aurora)的科罗拉多州Anschutz大学医学校园生物化学与分子遗传学系| 5蜂窝和分子生物学,加利福尼亚州立大学,诺斯里奇,美国加利福尼亚州诺斯里奇| 6国际人类基因组研究实验室,墨西哥Querétaro的JuriquillaQuerétaro大学NacionalAutónomadeMéxico(UNAM)| 7美国加利福尼亚州斯坦福大学斯坦福大学地球系统科学系| 8 Biocontol和Molecular Ecology,Manaaki wherua - Landcare Research,Lincoln,新西兰| 9新西兰奥克兰大学奥克兰大学生物科学学院