单晶金属纤维的成本效益,多功能和快速沉积对于从催化,等离子体,电化学和光电子学到模板,外延底物和集成纳米制造的广泛应用至关重要。高晶体质量通常意味着低增长率,这使得通过常规方法实现超过1 µm的厚度的挑战。我们显示了MGO底物上表面纳税单晶Au,Ag和Cufim的宽敞空间升华。我们在小于1H的厚度中证明了10 µm的厚度,同时在一系列低索引晶体膜方向上保持低5 nm RMS的表面粗糙度。我们表明,可以通过基于“视线”升华的简单模型来捕获结果,该模型可作为预测工具,并提供了讨论更广泛的潜力以及这种方法的局限性的基础。
结果和讨论的底层纳米生成剂通过触发电气和静电诱导产生电力。接触电气是指在接触中的两个不同序列之间的电子转移,因为原子是如此近。在摩擦电气化后产生一个电子场,电静电诱导是由电场引起的。teng的电荷流如图1所示。当两种摩擦材料相互接触时,表面会产生不同的电荷。分离时,上表面电极的感应电子将流到下表面电极,形成电流流。当两个摩擦式配置接近时,下表面上的电极的电子将流回到上表面的电极,形成向下的电流,直到两个扭矩电力材料相互接触。
有效的电化学能源存储和转化需要高性能电极,电解质或催化剂材料。在这项贡献中,我们讨论了ForschungszentrumJülich(IEK-13)的能源和气候研究所基于模拟的努力,以及旨在改善计算方法并提供能源材料的分子水平的合作机构。我们专注于讨论电子结构,氧化态和相关的氧化还原反应的正确计算,掺杂的氧化物中的相转化以及在存在电解质存在下氧化物和金属表面上表面化学反应的挑战。尤其是,在此贡献的范围内,我们提供了有关Ni/Co和AM/U含氧氧化物以及Pb,Au和Ag Metal表面材料的新的模拟数据。计算结果与可用的实验数据结合使用,以进行计算方法性能的周到分析。
这一原理通过管道内流动的流体压力变化来体现,管道内径减小,类似于文丘里管。在逐渐变窄的管道的宽部分,流体以较低的速度流动,产生较高的压力。当管道变窄时,它仍然包含相同量的流体;但由于通道收缩,流体以更高的速度流动,产生较低的压力。这一原理也适用于飞机机翼,因为它的设计和构造具有曲线或拱度。[图 1-9] 当空气沿机翼上表面流动时,它比沿机翼下表面流动的气流行进的距离更大。因此,根据伯努利原理,机翼上方的压力小于机翼下方的压力,从而在低压方向上对机翼上曲面产生升力。
真空涨落转化为真实粒子最早是由 L. Parker 在考虑膨胀宇宙时预测的,随后 S. Hawking 在黑洞辐射研究中也做出了预测。由于他们的实验观察具有挑战性,模拟系统在验证这一概念方面引起了关注。在这里,我们提出了一个实验装置,它由两个相邻的压电半导体层组成,其中一个带有动态量子点 (DQD),另一个是 p 掺杂的,顶部有一个附加栅极,这引入了空间相关的层电导率。后一层上表面声波 (SAW) 的传播由具有有效度量的波动方程控制。在 DQD 的框架中,这个空间和时间相关的度量拥有 SAW 的声波视界,并且在某种程度上类似于二维非旋转和不带电黑洞的声波视界。DQD 自旋的非热稳态表示以压电声子的形式产生粒子。
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制
关键词:飞机设计 摘要 HondaJet 是一款先进的轻型公务机,与现有的小型公务机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。
摘要 HondaJet 是一款先进的轻型商务喷气机,与现有的小型商务喷气机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。
对高性能电池日益增长的需求推动了人们对插层正极材料的晶体/表面结构和电化学性质的根本性理解,其中橄榄石型、尖晶石和层状锂过渡金属氧化物材料在过去十年中由于成功的商业化而受到了特别的关注。虽然目前大多数研究集中于这些材料的宏观和体相晶体结构,但我们以前的研究表明,作为发生电荷转移的受限区域,正极材料的界面结构在很大程度上决定了它们的电化学性能,因为结构对称性从三维(体相)破坏到二维(表面),从而导致在不同的化学/电化学条件下的重构。通过总结该主题的研究并提出我们的观点,本教程评论将首次揭示原子/分子尺度上表面结构和界面重构之间的相关性及其对相应电化学性能的直接影响。更重要的是,通过扩展从这三个经过充分研究的系统中获得的知识,我们相信建立的相同原理可以普遍适用于已成为新电池化学前沿的其他阴极材料。
摘要:传统的制备金属—陶瓷复合结构的方法,由于金属与陶瓷材料之间的热膨胀系数等性能差异,容易产生分层、开裂等缺陷。激光定向能量沉积(LDED)技术具有在成形过程中可以改变材料成分的独特优势,该技术可以克服成形复合结构时存在的问题。本研究利用LDED技术制备了多层复合结构,不同的材料采用各自合适的工艺参数进行沉积。先沉积一层Al 2 O 3 陶瓷,再沉积三层NbMoTa多主元合金(MPEA)作为单一复合结构单元。在φ20 mm×60 mm圆柱体上表面成形了由多个复合结构单元组成的NbMoTa–Al 2 O 3 多层复合结构试件,耐磨性较NbMoTa提高了55%。平行成形方向电阻率为1.55×10 − 5 Ω×m,垂直成形方向电阻率为1.29×10 − 7 Ω×m,成功获得了一种电各向异性的新型材料,本研究为智能材料及新型传感器的制备提供了实验方法和数据。