Shor 的论文对密码学界造成了威胁,人们意识到了后量子系统的必要性。2016 年,美国政府机构国家标准与技术研究所 (NIST) 呼吁开发新的后量子密码算法,以便在不久的将来系统化后量子候选算法 [11],并于 2019 年根据各种数学问题公布了 17 个公钥加密和密钥建立算法候选算法和 9 个数字签名算法候选算法 [10]。目前,有五个主要的后量子研究领域正在进行,其中四个在 [3] 中进行了讨论,包括基于格问题的基于格的密码学、基于解码一般线性码的基于代码的密码学,这是一个 NP 完全问题 [2]、基于求多元二次映射的逆的难度或等价于求解有限域上的一组二次方程的多元密码学,这是一个 NP 难问题、基于单向哈希函数的基于哈希的密码学和基于同源问题的基于同源的密码学,例如 [5, 4]。在本文中,我们提出了一种密钥交换协议,其安全性依赖于计算代数几何中的各种问题,例如求解大型多变量高次多项式方程组,或者寻找由多个多变量多项式生成的理想的初等分解,我们推测这些问题是量子安全问题。简而言之:Alice 通过 Segre 和 Veronese 映射选择一个嵌入在大型射影空间中的二次曲面。她提供了一些信息,例如嵌入和品种的自同构,以便 Bob 可以生成达成一致公共密钥所需的嵌入。Bob 和 Alice 都有各自的嵌入,通过这些嵌入他们可以隐藏他们的秘密二次曲面,而是发布包含各自嵌入图像的相应超平面。现在,通过使用他们的私有嵌入,他们计算彼此超平面的拉回,恢复(2,2)齐次曲线,并最终计算组件的 j 不变量。在一些启发式假设下,双方都能够以高概率获得此类组件。j 不变量相等,这是 Alice 和 Bob 的共同密钥。尽管公开数据可用,但由于对潜在问题的假设,攻击者无法恢复私有数据的信息。
指示与上层量子算法所期望的相比,可观测量当前是否为负。在跟踪等效可观测量的各种选择之间的一个关键区别是,不同的选择可以有不同的副产品算子。从一种逻辑可观测量的选择转移到另一种逻辑可观测量是一种簿记操作,其中副产品算子之间的关系由分离可观测量的稳定器的测量结果决定。因此,最终,在空间中移动逻辑可观测量归结为将许多稳定器测量的贡献正确地乘以其副产品算子。例如,考虑一个具有逻辑可观测量 XL = + X 1 X 2 X 3 和测量的稳定器可观测量 XS = + X 1 X 2 X 4 X 5 的系统。假设稳定器测量结果在误差修正后为 − 1 ,这意味着您确信 − XS = +1 。根据此信息,你可以得出 XL = XL · +1 = XL · − XS = − X 3 X 4 X 5 。换句话说,XS 告诉你如何用量子位 3、4 和 5 而不是量子位 1、2 和 3 来表达逻辑可观测量 XL。它允许你将逻辑可观测量从由量子位 1、2 和 3(使用副积运算符 +1)支持移动到由量子位 3、4 和 5(使用副积运算符 − 1)支持。在现实场景中,由于代码距离大或路由距离长,移动逻辑可观测量将涉及将数百甚至数百万个稳定器乘以可观测量的副积运算符。如果这些稳定器的任何一个(或三个、五个等)测量值错误,则移动的逻辑可观测量的符号将是错误的。这是一个逻辑错误;这将导致灾难性的情况,即量子计算机执行的上层算法将默默地产生糟糕的结果。计算稳定剂的大型乘积与容错量子计算的相关性在量子纠错领域是众所周知的 [ RHG07 ;Hor+12 ;Cha+22 ;CC22b ;CC22a ]。移动逻辑可观测量需要将许多稳定剂相乘,如果将所有东西永远放在同一个地方,就不可能进行任何计算。因此,能够可靠地计算巨大的稳定剂乘积极其重要。鉴于这些事实,奇怪的是没有完善的实验来直接验证计算大型稳定剂乘积的能力(类似于记忆实验是直接验证随时间保存量子比特的能力的完善基准 [ GQ21 ;Rya+21 ;Zha+22 ;Kri+22 ;And+20 ])。本文提出的实验类型“稳定性实验”的目标就是填补这一空白。从高层次来看,稳定性实验实际上与记忆实验非常相似(见图 2)。记忆实验之所以有效,是因为它们设置了一个跨时间的全局不变量的情况,然后检查该不变量。不变量是指在时间结束时测量的状态应该与在时间开始时准备的状态相匹配。这使得记忆实验有些退化。测量结果是提前知道的,因此在算法上不需要在运行时执行所有那些昂贵的量子操作。在大型量子计算中,你会希望优化掉任何看起来像记忆实验的东西。稳定性实验也通过创建和验证全局不变量来工作。主要区别在于,稳定性实验不是使用跨时间的全局不变量,而是设置一个跨空间的全局不变量的情况。具体来说,在稳定性实验期间,稳定器区域的乘积的正确值是提前知道的。这使得稳定性实验有些退化,就像记忆实验一样,在实践中,在大型量子计算中,你会希望优化掉任何看起来像稳定性实验的东西。不过,通过避免删除退化的冲动,你可以将运行时计算的乘积与已知的正确值进行比较。这样您就可以确定您的纠错系统在快速确定稳定器区域的这些乘积方面有多好。有几个原因值得对稳定性实验的结果感兴趣。例如,稳定性实验可用于确定需要多少轮才能达到逻辑量子位正确移动的期望确定性水平。更一般地说,稳定性实验可用于量化“类时码距离”(稳定器测量重复的次数)是否需要小于或大于“类空码距离”(表面代码斑块的直径)。通常假设这些数字是相同的,但没有严格的理由要求它们必须相同。图 2 给出了对稳定性实验感兴趣的更抽象的理由:稳定性实验隐藏在常见量子计算的拓扑时空图中。对稳定性实验感兴趣的最后一个原因是,由于其代码距离在稳定性实验中,稳定器区域的乘积的正确值是预先已知的。这使得稳定性实验有些退化,就像记忆实验一样,在实践中,在大型量子计算中,你会想要优化掉任何看起来像稳定性实验的东西。不过,通过避免删除退化的冲动,你可以将运行时计算的乘积与已知的正确值进行比较。这可以让你确定你的纠错系统在快速确定稳定器区域的这些乘积方面有多好。有几个原因值得对稳定性实验的结果感兴趣。例如,稳定性实验可用于确定需要多少轮才能达到所需的确定性水平,即逻辑量子位被正确移动。更一般地说,稳定性实验可用于量化“类时码距离”(稳定器测量重复的次数)是否需要小于或大于“类空码距离”(表面码斑的直径)。通常假设这些数字是相同的,但没有严格的理由要求它们必须相同。图 2 给出了对稳定性实验感兴趣的更抽象的理由:稳定性实验隐藏在常见量子计算的拓扑时空图中。对稳定性实验感兴趣的最后一个原因是,由于其代码距离在稳定性实验中,稳定器区域的乘积的正确值是预先已知的。这使得稳定性实验有些退化,就像记忆实验一样,在实践中,在大型量子计算中,你会想要优化掉任何看起来像稳定性实验的东西。不过,通过避免删除退化的冲动,你可以将运行时计算的乘积与已知的正确值进行比较。这可以让你确定你的纠错系统在快速确定稳定器区域的这些乘积方面有多好。有几个原因值得对稳定性实验的结果感兴趣。例如,稳定性实验可用于确定需要多少轮才能达到所需的确定性水平,即逻辑量子位被正确移动。更一般地说,稳定性实验可用于量化“类时码距离”(稳定器测量重复的次数)是否需要小于或大于“类空码距离”(表面码斑的直径)。通常假设这些数字是相同的,但没有严格的理由要求它们必须相同。图 2 给出了对稳定性实验感兴趣的更抽象的理由:稳定性实验隐藏在常见量子计算的拓扑时空图中。对稳定性实验感兴趣的最后一个原因是,由于其代码距离因为它的代码距离因为它的代码距离
构造凸集的仿射几何不变量作为转移概率 [16]。这一发展导致了量子力学广义凸方案的出现,从这个角度来看,当今理论的方案并不是唯一的,而是数学上可接受的“量子世界”大家族中的一个特殊成员。人们还猜测凸集理论在量子物理学中可能发挥与黎曼几何在广义相对论中类似的作用 [16]。本文的目的是更进一步,表明“凸方案”足够灵活,可以包含量子力学的非线性版本,其中非线性波动方程将扮演薛定谔方程的角色。为此,第 2 节概述了基于凸集理论的量子力学的几何描述。第 3 节和第 4 节将系统的几何与动力学联系起来,这种动力学允许为遵循广义波力学的系统构造量子态的凸流形。第 4 节指出了所得方案的一些应用,第 5 节讨论了其与其他物理理论的关系。
详细燃烧系统的详细数值模拟需要大量的计算资源,这限制了它们在优化和不确定性量化研究中的使用。从有限数量的 CFD 模拟开始,可以使用一些详细的函数评估得出降阶模型。在本研究中,考虑将主成分分析 (PCA) 与克里金法相结合以识别准确的低阶模型。PCA 用于识别和分离系统的不变量,即 PCA 模式,而不是与特征操作条件相关的系数。然后使用克里金法找到这些系数的响应面。这导致了一个替代模型,允许以较低的计算成本执行参数探索。本文还介绍了经典 PCA 方法的变体,即局部和约束 PCA。该方法分别在 OpenSmoke++ 和 OpenFoam 生成的 1D 和 2D 火焰上进行了演示,并为其开发了精确的替代模型。
1 助理教授,2 高中教师,摘要:图论和代数结构是数学中两个截然不同但又相互关联的领域。本研究论文旨在研究这两个领域之间的深刻关系,并探索它们融合的应用和含义。通过深入研究图的代数性质和代数结构的图形表示,我们发现了丰富的数学概念和技术。本文研究了图论的基本概念,包括顶点、边、连通性和图不变量,以及它们与群、环和域等代数概念的联系。此外,它还探讨了图论在代数结构研究中的作用,包括将代数对象表示为图以及使用图论工具解决代数问题。此外,本文还讨论了这种跨学科方法在计算机科学、化学、物理和社交网络等各个领域的应用。通过弥合图论和代数结构之间的差距,这项研究有助于更深入地理解数学概念及其实际应用。
Λ ≈ 60 Gyr。我们还表明,轨道周期和临界周期之比自然地从 Kretschmann 标量中得出,该标量是表征所有由德西特-史瓦西时空有效表示的双星系统的二次曲率不变量。双星系统在限制暗能量方面的适用性取决于其开普勒轨道周期 TK 与临界周期 T Λ 之比。TK ≈ T Λ 的系统最适合限制宇宙常数 Λ ,例如本星系群和室女座星系团。TK ≪ T Λ 的系统以吸引性引力为主(最适合研究修改后的引力校正)。TK ≫ T Λ 的系统以排斥性暗能量为主,因此可以用来从下方限制 Λ。我们利用后牛顿和暗能量修正的统一框架来计算有界和无界天体物理系统的进动,并从中推断出对 Λ 的限制。我们分析了脉冲星、太阳系、人马座 A* 周围的 S 型恒星、本星系群和室女座星系团,它们的轨道周期为几天到千兆年。我们的结果表明,当系统的轨道周期增加时,宇宙常数的上限会降低,这强调了 Λ 是双星运动中的关键周期。
摘要:几何相位用于构造量子门,因为它可以自然地抵抗局部噪声,充当几何量子计算的模块化单元。同时,需要快速非绝热几何门来减少退相干引起的信息损失。在这里,我们提出了一种非绝热几何量子门的数字模拟,以达到绝热的捷径 (STA)。更具体地说,我们将基于不变量的逆向工程与最优控制理论相结合,在两级量子比特系统的背景下设计快速且鲁棒的阿贝尔几何门,以抵抗系统误差。我们以 X 和 T 门为例,其中的保真度和鲁棒性是通过理想量子电路中的模拟来评估的。我们的结果还可以扩展到构造两量子比特门,例如受控相位门,它与单个量子比特绕 Z 轴旋转共享等效有效哈密顿量。这些受 STA 启发的非绝热几何门可以在物理上实现量子纠错,从而实现噪声中型量子 (NISQ) 时代的容错量子计算。
摘要 计量矩阵 S 表示反应速率向量到浓度时间导数空间的映射。计量矩阵的左零空间包含动态不变量:浓度变量的组合,称为代谢池,其总浓度不会随时间而变化。通过类比 S 形成的传统反应图,可以从 ST 得出化合物图。与 S 的(右)零空间的通量分析类比使我们能够将代谢池分为三类:A 类包含以某些部分形式的化学元素及其组合,B 类除了包含网络内部携带此类部分的辅因子外,还包含此类部分,C 类仅包含辅因子。左零空间基的凸公式使我们能够将代谢池直接分为这三类。 B 型代谢池包括保守池,这些池形成代谢物和辅因子的部分占据和部分空置浓度状态的结合物。因此,B 型代谢池描述了主要底物和辅因子之间捕获能量和氧化还原电位等特性的部分交换的各种状态。凸基可以清楚地洞察人类红细胞中糖酵解途径的这种交换,包括识别形成结合物的高能池和低能池。示例表明,池图可能比通量图更适合信号通路。对化学计量矩阵左零空间的分析使我们能够定义细胞的可实现状态及其生理相关性。
将残余应力效应纳入塑性、断裂和疲劳裂纹扩展模型以评估铝制船舶结构的可靠性 1.0 目标。 1.1 本项目的目标是开发一种经过实验校准和验证的计算工具,该工具可准确预测结构铝合金在残余应力影响下因疲劳和延性断裂而产生的塑性响应和失效。该数值工具不仅可用于铝制船舶结构的可靠性评估和生存力分析,还可用于制定船舶设计和优化的断裂控制计划。 2.0 背景。 2.1 近年来,计算力学的快速发展使工程师能够分析复杂的船舶结构、评估结构可靠性和优化结构设计。因此,对更精确的材料模型的需求变得越来越明显;特别是当最小化设计裕度成为重量优化或延长寿命的方法时。 2.2 船舶结构可能会受到大海或事故(如碰撞和搁浅)造成的极端载荷条件的影响。军用舰船在作战中还要承受严峻的载荷,在极端条件下,舰船结构可能会发生较大的塑性变形,这种变形可能是单调的,也可能是循环的,从而导致结构失效。2.3 到目前为止,绝大多数结构分析采用经典的 J 2 塑性理论来描述金属合金的塑性响应,该理论假设静水应力和应力偏量第三不变量不影响塑性行为。然而,越来越多的实验证据表明,J 2 塑性理论中的假设对许多材料来说是无效的。Gao 等(2009)注意到 5083 铝合金的塑性响应与应力状态有关,并提出了 I 1 -J 2 -J 3 塑性模型。2.4 等效断裂应变通常用作延性断裂准则,人们普遍认为它的值取决于应力三轴性(Johnson and Cook,1985)。然而,最近的研究表明,单独的应力三轴性不足以表征应力状态对延性断裂的影响。Gao 等人(2009)开发了一种应力状态相关的延性断裂模型,其中失效等效应变表示为应力三轴性和应力偏差的第三不变量的函数,并且针对 ABS Grade DH36 钢校准了该断裂模型。2.5 Gao 团队(Jiang, Gao and Srivatsan;2009)的先前研究开发了一种不可逆内聚区模型来模拟疲劳裂纹扩展。该模型已成功针对 7075 铝合金进行校准,并预测了紧凑拉伸剪切试样中的疲劳裂纹扩展。数值结果捕捉了加载模式和过载对疲劳裂纹扩展速率的影响。2.6 焊接接头广泛应用于船舶结构。然而,它们给建模和分析带来了很大的复杂性,例如母材、焊件和热影响区的材料行为和特性不同;焊趾处的几何不连续性(这会改变应力分布并导致焊趾处出现高应力)和残余应力。这些因素加剧了施加在底层材料上的局部应力,降低了不考虑此类影响的材料模型的准确性。焊缝通常不会在结构尺度上以这种详细程度建模,但由于这些原因,故障通常会在这个区域开始
第一单元:粒子力学。粒子系统力学、约束、达朗贝尔原理和拉格朗日方程、速度相关势和耗散函数拉格朗日公式的简单应用第 1 章。第 1、2、3、4、5 和 6 节。汉密尔顿原理,变分法的一些技巧。从汉密尔顿原理推导出拉格朗日方程。守恒定律和对称性、能量函数和能量守恒第 2 章。第 1、2、3、5 和 6 节第二单元:简化为等效的一体问题。运动方程和一阶积分、等效一维问题和轨道分类、轨道微分方程和可积幂律势、闭合轨道条件(伯特兰定理)、开普勒问题力的平方反比定律、开普勒问题中的时间运动、有中心力场中的散射。第 3 章。第 1、2、3、5、6、7 和 8 节勒让德变换和哈密顿运动方程。循环坐标、从变分原理推导哈密顿运动方程、最小作用量原理。章:7,节:1、2、3、4 和 5。第三单元:正则变换方程、正则变换示例、谐振子、泊松括号和其他正则不变量、运动方程、无穷小正则变换、泊松括号公式中的守恒定理、角动量泊松括号关系。章:8,节:1、2、4、5、6 和 7。汉密尔顿 - 汉密尔顿主函数的雅可比方程、作为汉密尔顿 - 雅可比方法的一个例子的谐振子问题、汉密尔顿 - 汉密尔顿特征函数的雅可比方程。作用 - 单自由度系统中的角度变量。章:9,节:1、2、3 和 5。教科书:经典力学 - H. Goldstein 参考书:经典力学 - JB Upadhayaya 经典力学 - Gupta, Kumar and Sharma