壳聚糖是由114批量的Mahtani壳聚糖提供的,其乙酰化度(DA)为2%,由1 H NMR确定,质量平均摩尔质量(m w)为619 kg/mol,分散剂(ð)的分散剂(1.6),由尺寸 - 1.6,通过尺寸 - 散发性切除率确定。壳聚糖以1、2-丙二醇和ACOH(50/50 V/V)的水醇混合物中的0.5%(w/v)以0.5%(w/v)的形式进行乙酰基壳。在剧烈的机械搅拌下将壳聚糖(GLCN)单位的静态藻类添加到D-葡萄糖(GLCN)单元中,并混合18小时以达到靶向DA。然后将壳溶液通过纤维素膜过滤,孔径从3 µm降低至0.45 µm。乙酰化的壳聚糖最终用NH 4 OH沉淀,用去离子水洗涤并冷冻干燥。乙酰化的壳聚糖,DA为35%,M W的693 kDa和1.8的分散性。
序号 优先研究主题领域 2025 1 生物能源 1.木质纤维素棕榈油废弃/收获残渣生物转化成生物燃料原料脂质(脂肪油)的技术。 2. 开发基于油或棕榈生物质的生物碳氢化合物和含氧化合物BBN生产技术,可在小规模/本地规模应用。 3. 开发利用棕榈油废液沼气/生物甲烷生产液体生物燃料的温和技术。 4、甘油转化生产丙二醇、乳酸、聚甘油等大宗化工产品的技术开发。 5. 开发更有效、可回收、更环保的生物柴油生产催化剂。 6. 优化商业模式/棕榈油基生物能源产品(BBN/沼气/生物质)的供应和利用商业化。 7. 全面研究强制性BBN实施的经济价值、可持续性和影响。 2 生物材料和油脂化学品
乙酸和酮衍生物。[1] 这些化学品作为制造香水、染料和药物的重要分子构件和中间体具有广泛的应用。由于 C C 键能相对较高(90 kcal mol - 1 ),C C 键断裂在热力学上不利,传统的 C C 键断裂过程大多是由能量和成本密集型系统驱动的热催化反应,严重依赖有毒/昂贵的氧化剂、贵金属催化剂,并且通常需要恶劣的条件。[2] 因此,在温和条件下进行选择性 C C 键断裂作为升级生物质衍生多元醇的有效工具而备受追捧。甘油是一种用途广泛的多元醇,也是生物柴油生产中的重要副产品,生物柴油产量巨大,导致大量过剩产品以极低的价格(0.11 美元/公斤)涌入市场。[3] 因此,甘油被视为生物废弃物,也是生产高价值化学品的十大生物质衍生平台分子之一(美国能源部列出)。[4] 在适当条件下,甘油可以选择性地氧化或还原成精细化学品,如丙烯醛、[5] 二羟基丙酮、[6] 乳酸、[7] 丙烯酸、[8] 1,2-丙二醇、[9] 或 1,3-丙二醇。[10] 鉴于这种潜力,人们投入了大量精力来探索一种有效的催化剂,以实现高转化率和对目标产品的高选择性。金/碳催化剂是早期的例子之一,它只有在 NaOH 存在下才有效。因此,氧化产物通常是钠盐,这使得后净化过程非常困难。[11] 此后,人们致力于寻找不使用 NaOH 的替代催化剂。最近有报道称,Mn 2 O 3 可以在 140 °C 和 1 MPa O 2 下将甘油转化为乙醇酸,选择性为 52.6%。[12] 然而,开发高效、高选择性催化剂将甘油转化为特定产品仍然是一项重大挑战。因此,选择性甘油 CC 裂解不仅具有重要的科学意义,而且考虑到相关产品的高价格(例如,每公斤乙醇醛 9 美元,比反应物甘油贵 80 倍),也具有经济意义。光催化已被公认为在非常温和的条件下进行 C C 键裂解反应的一种有前途的策略。[13]
目的:此标准参考材料(SRM)用于用于BK病毒脱氧核糖核酸(DNA)定量材料的价值分配,主要用于定量聚合酶链反应(QPCR)。描述:SRM 2365由一个良好的,线性化的质粒组成,包含BK病毒DNA溶于10 mmol/L 2-Amino-2-(羟基甲基)-1,3丙二醇盐酸二氯化物(TRIS HCl)和1 mmol/lethyynediamenetrainetraexta persate persata pysta consatta safta proffasta prounse prounse溶液。 (TE),添加了50 ng/µl酵母TRNA,以确保稳定性。SRM的一个单位由一个0.5 ml管组成,其中包含约110 µL DNA溶液。将管子标记,并用螺钉盖密封。认证值:表1中提供了经认证的值。NIST认证值是NIST对所有已知或可疑偏见来源的信心的最高信心。拷贝数值在学上可以追溯到自然单位计数1和比率1和国际单位系统(SI)派生的体积单位[1]。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
随着生物柴油生产的不断增长的市场的不断增长(副产品的过度供应),甘油会减少其市场价值,从而促进潜力的创新。大量的甘油可以被用作可再生的原料,用于有价值的化学生产,例如1,3-丙二醇(PDO),3-羟基丙酸(3HP)和3-羟基丙醛醛(3HP)(3HPA)。PDO是一种有吸引力的化学物质,为在基于生物的化学工业中具有较高工业兴趣的众多应用提供了理想的平台。随着生物技术PDO生产的商业化,研究人员集中在开发有效的微生物生物厂,使用替代性廉价底物的生物过程中的成本效益上,以及消除不希望的副产品。本综述探讨了自然的PDO产生和甘油拟合微生物,讨论了它们的相关基因和代谢途径。在本综述中检查了使用工业甘油和与这些微生物的工业应用相关的遗传和代谢障碍所带来的挑战。该评论还探讨了应对这些挑战的生物技术策略,包括诱变,代谢和进化工程。
1。使用溶剂提取和研究影响Crystallite size-https://iopscience.org/article/10.10.1088/2053-1591/abc2df 2。大规模P-Type的制造75%SB2TE3-25%BI2TE3热雾化和热等速度按下热电学材料和热等静态按下 - https://doi.org/10.1016/j.materresbull.2020.1020.110924 3.MOS2和N之间的协同作用,S-掺杂的石墨烯氧化石墨烯支持的钯纳米颗粒用于氢进化反应-https://doi.org/10.1016/j.matchemphys.2020.2020.123106 4。M@Pd(M = Ni,Co,Cu)的电催化研究支持N,S掺杂的S掺杂的氧化石墨烯对氢和氧气进化反应 - https://doi.org/10.1002/slct.202002200 5。分子印迹的聚苯胺分子受体基于分子的化学传感器,用于三聚氰胺 - https://doi.org/10.1002/jmr.2836 6。使用分子印刷的多丙二醇 - 氧酸作为分子识别元件 - https://doi.org/10.4028/www.scientific.scientific.net/nhc.29.61 7。共晶复合材料(BI,SB)2TE3/TE热电材料的机械和热电特性
ABSTRACT: simple, rapid, economical, precise and accurate stability indicating rp- hplc method for the estimation of dapagliflozin propanediol monohydrate and sitagliptin phosphate monohydrate in tablet dosage form has been developed.a reverse phase high performance liquid chromatographic method was developed for the estimation of dapagliflozin propanediol monohydrate and sitagliptin已经开发了磷酸盐剂量形式的磷酸盐。实现分离柱kromasil c18(150 x 4.6)5 µm ID,梯度程序20 mm二氢磷酸钾磷酸钾缓冲液:芳族依腈,作为流动相,流速为1 ml/min。在DAPA的220 nm保留时间进行检测,发现SITA为8.71和2.94分钟。该方法已通过线性,准确性和精度进行验证。dapagliflozin丙二醇一水合物和磷酸西他汀磷酸盐一水合物的线性度25.68-755.83μg/ml。开发的方法被发现是准确,精确且快速的,以估计dapagliflozin丙二醇一水合物和磷酸西丁列汀磷酸盐剂量形式。在相同的色谱条件下,该药物应对水解,氧化,光解和热降解的应力条件。在RP-HPLC系统上分析了应力样品。关键字:dapagliflozin丙二醇一水合物,西他列汀磷酸盐一水合物,稳定性,指示RP-HPLC方法,验证。i。简介:糖尿病是慢性疾病,当胰腺产生足够的胰岛素或人体无法有效使用其产生的胰岛素时,会发生。这可能导致健康问题。高血糖,也称为血糖升高或血糖升高,是不受控制的糖尿病的常见影响,并且随着时间的流逝会导致身体的真正伤害,尤其是神经和血管。糖尿病是人体无法产生足够或任何胰岛素的一组疾病,无法正确使用所产生的胰岛素,也无法组合任何一个。这可能导致高血糖水平。葡萄糖是血液中发现的糖,是您的主要能源之一。缺乏胰岛素或血液中积聚。[1]。2型糖尿病也称为非胰岛素依赖性糖尿病,这意味着您的身体无法正确使用胰岛素。主要是人们通过健康的饮食和运动来控制其血糖水平,有些人正在使用药物。[2]尽管2型糖尿病在老年人中更为普遍,但年轻人的情况有所增加,因为肥胖儿童人数增加。[3]。DAPA和SITA的结构如图所示。[4-5] Sita sitagliptin增加胰岛素的产生并减少肝葡萄糖过量产生。西他列汀延长了GLP-1和GIP的作用。通过提高活性降脉蛋白水平,西他列汀会增加胰岛素的产生并降低α细胞的胰高血糖素分泌,从而降低肝葡萄糖过量产生。DAPA抑制SGLT2,DAPA阻止了肾脏中过滤的葡萄糖的吸收,肾脏中的葡萄糖葡萄糖排除量增加了葡萄糖的排除水平,并增加了葡萄糖的水平。[9-15]。ltd,使用。[6-8]通过文献调查发现,分析方法可用于单独估计DAPA和SITA以及其他组合。因此,人们认为可以执行稳定性,指示RP-HPLC方法开发和验证片剂剂型的同时估计。随着国际协调会议(ICH)指南的出现,建立稳定性指标方法(SIAM)的要求变得更加明确。该指南明确要求在各种条件下进行强制分解研究,例如pH,光,氧化等。和药物与降解产物的分离。[16]因此,这项工作的目标是开发一种新的敏感稳定性,指示RP-HPLC方法同时确定DAPA和SITA。此外,它还以平板电脑剂型形式的名为UDAPA-S 10/100含DAPA和SITA的市场产品进行了验证。[17] II。使用Shimadzu HPLC,LC 2010 CHT模型和LC解决方案软件。乙腈,甲醇,二氢磷酸盐,MILI-Q水和AR级的正磷酸来自Merck Life Science Pvt。从当地市场购买了商业剂量UDAPA-S 10/100。
已经开发了一种新的,重新付费,简单,简单且可重复的稳定性指示RP-HPLC方法,用于同时估计片剂中的Linagliptin和Dapagliflozin丙二醇一水合物。使用流动A期磷酸盐缓冲液(pH 3.5)和流动相B期乙腈的梯度程序设置来实现Dapagliflozin和Linagliptin的分离。使用在25°C的惯性相-3V,150 x 4.6毫米,5µ色谱柱作为固定相。流速保持1.0 mL/分钟,并在233 nm处进行检测。的保留时间分别为Linagliptin和Dapagliflozin分别为2.86分钟和7.45分钟。该方法被发现是稳定性的,表明所有降解物与Linagliptin和Dapagliflozin峰分离。该开发的方法已根据ICH指南对系统的适用性,特异性,精度,线性,准确性和鲁棒性进行了验证。这种方法是特定的,并且在Linagliptin和dapagliflozin的浓度范围为2.5-7.5 µg/ml和5-15 µg,浓度范围分别为Linagliptin和Dapagliflozin的相关系数(R2)值分别为0.998和0.999。该方法具有未来的潜力,可用于常规质量控制分析以及加速稳定性测试。
在相对端,尚未探索盐浓度以形成超级稀释电解质,这是考虑到低离子电导率的可能浓度极化5。因此,今天仍然使用1 m(mol/l)的标准浓度。4然而,由于Na +的STOKES半径和脱溶能的较小,而Na-Ion电池(NIBS)有可能采用低浓度的电解质获得足够的动力学性能。6,7此外,减少昂贵的盐含量可以有效地控制Nibs的成本(图S1),8,这对在网格存储中的应用是有益的。在此,我们提议在第一次使用超浓度的电解质(0.3 m)为实用的Na-ion全细胞使用,这是令人惊讶的,它在稀释电解质化学的较宽工作温度范围内实现了良好的性能。这种有吸引力的电解质配方是通过反向设计提供的,它为解决极端条件下可充电电池的故障问题提供了新的见解。通过将NAPF 6溶解在碳酸乙酯(EC)/丙烯酸丙二醇(PC)(1:1 vol%)的情况下,制备了一系列具有不同浓度的电解质,而没有额外的添加剂 div>