通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。
图 1 苯丙酮尿症 (PKU) 是由苯丙氨酸羟化酶 (PAH) 基因的隐性遗传变异引起的(图 A)。苯丙氨酸羟化酶 (PAH) 是一种同源四聚体,可催化苯丙氨酸 (Phe) 不可逆转化为酪氨酸 (Tyr)。该反应需要还原四氢生物蝶呤 (BH 4 )、铁和分子氧作为辅因子(未显示)。在没有 PAH 活性的情况下,苯丙氨酸会在组织中积聚,并以非酶促方式脱氨基为苯丙酮酸,并进一步氧化为其他苯酮,从而得名苯丙酮尿症 (PKU)。双等位基因 PAH 变体编码变体 PAH 信使 RNA (mRNA),然后导致不稳定、活性较差或无活性的 PAH 蛋白,以及肝脏中将 Phe 羟基化为 Tyr 的能力受损。基因疗法 (图 B) 旨在通过基因添加或基于 CRISPR/Cas 的基因或碱基编辑来恢复肝脏 PAH 表达;即,几种实现此目标的不同治疗方法正在小鼠身上进行临床前研究,包括 (1) 基因添加、(2) 通过脂质纳米颗粒 (LNP) 递送治疗性 mRNA、(3) 基因编辑/校正或 (4) 基因插入。目前,基因添加最常见的尝试是通过使用重组腺相关病毒 (rAAV) 载体或非病毒 (微环) 载体将 PAH 表达盒递送到肝细胞。 rAAV 基因组渗透到肝细胞核中,主要保持游离状态,不与宿主基因组相互作用,但表达治疗性转基因。在基因校正中,有几种不同的基因或碱基编辑技术可用于将病理变异位点校正回野生型序列。其中一些编辑方法存在校正频率低的问题;所有方法都必须针对每种特定的病理变异重新设计。基因插入通过将整个 PAH 表达盒永久插入肝细胞基因组中的某个位置,产生基因添加和基因校正的组合(有关更多详细信息,请参阅文本)。
关节软骨(AC)一旦损坏,修复的能力较差,进行性变性通常会导致骨关节炎(OA)。虽然AC原产质的额外细胞基质(ECM)制造的生物材料显示了修复局灶性AC缺陷的有望,但由于较大的支架机械性能,并且缺乏病因细胞中的软骨剂,必须克服几个挑战,以修复较大的负载缺陷。在这里,我们开发了一种方法来通过结合可生物吸收的3D印刷增强框架,并递送促肌抑制性基因以浸润干细胞增强软骨生成并产生更健康的AC的透明组织。对可生物吸收的多丙酮酸(PCL)3D印刷框架进行表面处理以改善其亲水性,并用于增强胶原蛋白透明质酸(CHYA)基质。然后,将机械加固的SCAF-折叠与软骨成生成转录因子Sox9进行基因激活(GA),该因子与使用糖胺聚糖结合增强的转换(GET)系统相结合的非病毒纳米粒子(NP),然后与人类Mesenchy-Malsenchy-malsensal stromsal(Hmsc)(HMSc)相结合。在软骨培养基中培养28天后,与基因自由对照相比,GA型夫人的HMSC沉积了更有指示健康透明软骨的ECM。SOX9在Ga支架上的mRNA表达是高于对照的2个磁性磁性词,而Sox9(Col2α1,Acan)的下游软骨靶标也表现出明显更高的mRNA水平。在GA支架上,促核ECM蛋白(例如COL2)的表达高(P = 0.0018),这也导致硫酸糖胺聚糖(SGAG)的产生和空间分布增强,这对健康AC的功能至关重要。总而言之,这些发现提供了证据表明,具有SOX9 NP的3D印刷仿生型促肌发育性支架的功能增强了人类干细胞在这种机械增强的支架上产生的ECM的质量。
药物研发和 COVID-19 疫情的最新进展表明,开发基于 RNA 的疫苗和针对人类疾病的 RNA 疗法非常重要。Nusinersen 和 risdiplam 是两种首创的脊髓性肌萎缩症药物,它们通过靶向 RNA 剪接恢复了功能性运动神经元蛋白。COVID-19 疫苗表明,mRNA 可用于以前所未有的速度生成高效疫苗。RNA 结构建模的进展现在可以精确地调节编码以前无法用药的蛋白质靶标的 RNA 的小分子。大量临床数据的积累验证了这些干预措施的有效性,促使人们在以 RNA 为重点的药物研发和治疗开发方面投入了大量研发资金。然而,目前的检测技术适用于蛋白质靶标而不是 RNA 靶标,阻碍了早期药物的发现。 Lucerna, Inc. 正在利用其荧光适体技术 (Spinach ™ ) 来实现靶标验证和高通量筛选 (HTS) 平台,以加速新的 RNA 药物发现。具体而言,我们开发了一个实时 RNA 成像平台,可以跟踪 mRNA 治疗递送、测量 RNA 半衰期并评估细胞中的 RNA 靶标参与度。此外,我们还开发了以下 HTS 平台,用于识别针对特定 RNA 致病机制的命中物:(1) 一种 HTS 检测,可直接测量由丙酮酸激酶 mRNA 剪接的小分子调节剂(一种关键的癌症代谢调节剂)引起的转录水平变化,(2) 一种 HTS 检测,可识别与 α-突触核蛋白的铁反应元件结合并调节其在帕金森病中的蛋白质翻译的小分子和/或反义寡核苷酸,以及 (3) 一种细胞检测,可报告在存在 RNA Pol III 抑制剂和 RNA 降解剂的情况下转录活性的变化。这些 HTS 检测平台克服了现有 RNA 靶向筛选技术中的几个主要问题,例如通量、蛋白质报告基因的使用、序列/结构特异性以及使用不能准确代表自然细胞环境的系统等。总之,Spinach™ 技术是一个 RNA 特异性平台,可以针对多种疾病机制,并有可能大大加速许多首创疗法的发现。
癌症恶病质是一种衰弱综合征,其特征是骨骼肌萎缩、虚弱和疲劳。多种致病机制可导致这些肌肉紊乱。已知线粒体变异、代谢改变和氧化应激增加会促进肌肉无力和肌肉分解代谢。为了改善恶病质,已测试了几种药物来刺激线粒体功能并使氧化还原平衡正常化。本研究的目的是测试 Mitoquinone Q (MitoQ) 的潜在有益抗恶病质作用,MitoQ 是最广泛使用的靶向线粒体的抗氧化剂之一。我们在这里表明,体内施用 MitoQ(每日 25 mg/kg 饮用水)能够改善 Colon-26 (C26) 携带者的体重减轻,而不会影响肿瘤大小。使用 MitoQ 治疗后,C26 宿主的骨骼肌和强度持续改善。与骨骼肌质量的改善相一致,MitoQ 治疗能够部分纠正 E3 泛素连接酶 Atrogin-1 和 Murf1 的表达。相反,合成代谢信号并没有因治疗而改善,这表现为 AKT、mTOR 和 4EBP1 磷酸化没有变化。基因表达评估显示,肿瘤宿主的线粒体生物合成和体内平衡标志物的水平发生了改变,尽管只有 Mitofusin-2 水平受到治疗的显著影响。有趣的是,参与调节线粒体功能和代谢的基因 Pdk4 和 CytB 的水平也因 MitoQ 而部分增加,这与己糖激酶 (HK)、丙酮酸脱氢酶 (PDH) 和琥珀酸脱氢酶 (SDH) 酶活性的调节一致。尽管肌肉 LDL 受体表达没有变化,但接受 MitoQ 治疗的 C26 携带者的氧化代谢改善与肌骨变性(即肌内脂肪滤过)减少有关,因此表明 MitoQ 可以促进肌肉组织中的 β 氧化,并促进肌肉代谢和纤维组成从糖酵解向氧化的转变。总体而言,我们的数据表明 MitoQ 是一种有效的治疗方法,可改善肿瘤宿主的骨骼肌质量和功能,并进一步支持旨在测试靶向线粒体的抗氧化剂与常规化疗药物联合使用的抗恶病质特性的研究。
知途径; 虚线代表未知途径; 图2(在线颜色)萜类,生物碱和苯丙烷的生物合成途径。萜类生物合成的途径可以分为三个阶段。第一阶段:IPP或DMAPP由G3P和丙酮酸或乙酰辅酶A作为底物产生;第二阶段,IPP和DMAPP用作底物来生成萜烯前体GPP,FPP和GGPP。第三阶段:GPP,FPP和GGPP在TPS的作用和修饰酶的作用下产生特定的萜类化合物。涉及萜类合成途径的酶包括:DXS,DXR,AACT,HMGS,IDI,GPS,FPS,FPS,GGPPS,GGPPS,ADS,CPS,CPS,CYP76AK2,CYP76AK2,CYP76AK3,CYP76AK3,PDS,PPTA / G,PPTA / G,CYP5150L8,和CYP505DD13D13。生物碱使用氨基酸作为其前体。4-羟基苯基甲醛和多巴胺转化为(S) - 霉菌,这是苄基等喹啉生物碱的前体;色素通过吲哚途径从分支酸合成,IPP/DMAPP通过虹膜素途径转化为secologinin。色素和secologanin被转化为严格辛汀,这是单二烯吲哚吲哚生物碱的常见前体。涉及生物碱合成途径的酶包括:NCS,TNMT,MSH,SOMT,TDC,CYP719A19,STOX,COOMT,COOMT,STR,SGD,SGD,4'OMT,G10H,G10H,G10H,SLS,SLS,LAMT和HSS。苯丙烷合成途径始于苯丙氨酸。苯丙氨酸被催化至4-甲基二氧化碳,该COA与丙二酰辅酶A反应形成类黄酮,并与3,4-二羟基苯乙酸形成酚酸。参与苯丙烷合成途径的酶包括:PAL,C4H,4CL,CHS,IFS,CHI,CHI,F3H,DFR,ANS,GTS,GTS,C3H,CCR,CCR,RAS和LAC;黄色块代表苯丙烷;蓝色块代表生物碱;绿色块代表萜烯;实线代表已知途径;虚线代表未知的途径;两条固体/虚线表示多步反应
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
Connor Kent, Qiang Shen , Zhipin Liang, Gabrielle Vontz, Caiyue Li, Lei Liu Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112 Background: Aberrant glucose and energy metabolism of cancer cells, a phenomenon referred as the Warburg effect in which most cancer cells produce energy predominantly through aerobic长期以来,在细胞质中的糖酵解是癌细胞的能源生产和合成代谢生长的主要代谢过程,并记录在促进乳腺癌(BC)发育。然而,失调的糖酵解如何促进卑诗省的发展仍然不确定。我们发现线粒体外膜蛋白的Mitoneet或Cisd1具有新颖的功能作为氧化还原酶。mitoneet构成了先前未知的NADH氧化的胞质途径,从而扩大了NAD+池,导致胞质醇中异常增加的糖酵解和ATP/能量产生,使Mitoneet成为势能能源代谢的调节剂。这项研究旨在确定Mitoneet是否充当癌基因,以促进胞质糖溶解,氧化磷酸化以及乳腺癌的增殖和进展。方法:用慢病毒载体转导MDA-MB-231细胞,该载体提供了旨在敲除CISD1的CRISPR-CAS9系统。糖酵解酶和氧化磷酸化复合物通过蛋白质印迹确定。使用ADP/ATP比率测定试剂盒(AB65313)对ADP与ATP的比率进行了量化。通过在6个井板中播种1000个细胞,孵育7个并用晶体紫罗兰色进行克隆生成测定。 单词计数:288/300克隆生成测定。单词计数:288/300MTT分析以评估细胞活力。结果:与对照相比,CISD1基因敲除MDA-MB-231细胞显示出菌落形成降低,氧化磷酸化复合物表达降低,增殖和生存力降低以及ADP/ATP的比率增加。在CISD1敲除MDA-MB-231中,丙酮酸脱氢酶表达增加了。结论:Mitoneet表达的降低会导致三阴性BC细胞系的生存力,增殖和产生降低,进一步支持我们相信Mitoneet作为一种驱动乳腺癌增殖和通过异常能量代谢的癌症的癌基因。
发酵是一种古老的食品加工技术,已经存在了很长时间。这是一个过程,例如酵母或细菌等微生物分解有机物,产生能量并改变其化学结构。例如,酵母将糖转化为酒精,而某些微生物将碳水化合物变成乳酸或其他化合物。发酵没有氧气,这意味着能量是由碳水化合物制成的,而不是像有氧呼吸一样被燃烧以产生能量。这个过程并不那么高效 - 它仅产生大约有氧呼吸所提供的能量的5%。发酵背后的主要原理是在周围没有氧气时从碳水化合物中获取能量。它始于糖酵解,其中葡萄糖被部分氧化成丙酮酸。然后,这种丙酮酸可以变成酒精或酸,同时,NAD+再生,因此可以通过糖酵解帮助更多的ATP。发酵使用厌氧生化途径来产生能量,但其效率低于有氧呼吸。发酵涉及各种生物,例如实验室(乳杆菌,乙酰杆菌和芽孢杆菌)细菌,酵母和霉菌。这些微生物可以根据其进行的发酵类型将葡萄糖转化为不同的化合物。有两种主要类型:乳酸均质化,其中葡萄糖转化为乳酸和乳酸异,这会导致乳酸,乙酸,乙醇,二氧化碳和水等产物的混合物。这些细菌发酵葡萄糖成乳酸,乙醇/乙酸和二氧化碳作为副产品。同型的一个例子是乳酸链球菌将葡萄糖分解成乳酸,在此过程中产生两个ATP分子。另一方面,一些酵母菌物种,例如糖酵母将丙酮酸转化为乙醇(乙醇),在此过程中再生NAD+。发酵是粮食生产和能源创造的至关重要的技术,但根据所涉及的微生物,它具有自己的一套规则和结果。leuconostoc,oenococcus,Weissella以及异乳乳杆菌参与了这一过程。3。丙酸发酵:葡萄糖通过一系列由丙酸杆菌和丙梭菌催化的生化反应分解为乳酸,丙酸,乙酸,二氧化碳和水。当糖可用并产生丙酮酸时,将使用EMP途径,然后将其转化为草乙酸盐,然后通过苹果酸,富马酸盐和琥珀酸酯降低至丙酸。乙酸和二氧化碳是这种发酵过程的另一个最终产物。4。二乙酰基和2,3-丁基乙二醇发酵:二乙酰基的产生与柠檬酸相关,而2,3-丁二醇的产生涉及双脱羧的步骤,该辅助辅助步骤由细菌属于肠子肠细菌,Erwinia,erwinia,hafnia,hafnia,klebsiella and klebsiella and serratia和serratia和serratia。5。酒精发酵:葡萄糖通过酒精发酵转化为乙醇,这是所有发酵过程中最著名的。通过酵母,某些真菌和细菌进行此过程,丙酮酸通过酵母中的EMP途径以及Zymomonas中的ED途径形成。6。丁酸发酵:梭状芽胞杆菌属的几种强制性厌氧细菌进行丁酸发酵,将葡萄糖与二氧化碳和二氧化碳和H2一起转化为乙酸,作为副产物。这些细菌中的一些产生较少的酸和更多中性产物。应用: - 抗生素的产生 - 胰岛素的产生 - 生长激素的产生 - 疫苗的产生 - 食品工业中干扰素的产生,发酵被用于生产: - 发酵食品: - 奶酪,葡萄酒,葡萄酒,啤酒和面包等发酵食品,例如高价值产品 - 食品级生物保护剂 - 各种食品的生物量 - 其他中心蛋白质 - 单个中心蛋白质蛋白质 - 单一的蛋白质蛋白质,源自单一的蛋白质,源自单一的蛋白质,生物燃料(生物柴油,生物乙醇,丁醇,生物氢),以及用于土壤和废水的生物修复过程的发展。发酵的局限性包括低规模的生产,需要高成本和能耗,以及污染的可能性。此外,自然变化可能导致需要进一步治疗的杂质,从而导致意外的最终产物。均质细菌主要将糖转化为乳酸,而杂种细菌产生了一系列化合物,包括乙醇,二氧化碳等。参考:Admassie,M。(2018)。关于食品发酵和乳酸细菌生物技术的综述。世界食品科学技术杂志,第2(1)期,19。Ciani,M.,Comitini,F。和Mannazzu,I。(2018)。发酵。生态百科全书,310–321年6月。36,第6期,pp。Ghosh,B.,Bhattacharya,D。和Mukhopadhyay,M。(2018)。将发酵技术用于增值工业研究。发酵技术的原则和应用,8月141日至161日。Hind,H。L.,&Day,F。E.(1930)。发酵行业。酿酒研究所杂志,第1卷。1–29。Landine,R。,De Garie,C。,&Cocci,A。(1997)。发酵过程。生物技术进步,15(3-4),702。Martínez-Espinosa,R。M.(2020)。 介绍性章节:关于下一份发酵和挑战的简要概述。 发酵过程的新进展。 Microbiology,F。(2016)。 食品发酵的基本原理。 食品微生物学:实践原理,228-252。 发酵技术的原则和应用。 (2018)。 Sharma,R.,Garg,P.,Kumar,P.,Bhatia,S.K。,&Kulshrestha,S。(2020)。 微生物发酵及其在发酵食品质量改善中的作用。 发酵,6(4),1-20。 关于作者:细菌在食品发酵,环境可持续性和行业发展中起着至关重要的作用。 他们将糖转换为各种产品,影响风味,质地和燃料生存能力。 同型细菌主要通过糖酵解途径产生乳酸。 关键特征包括单一初始产品生产和有效的代谢过程。 这些微生物在厌氧条件下壮成长,通常在低氧环境中发现。Martínez-Espinosa,R。M.(2020)。介绍性章节:关于下一份发酵和挑战的简要概述。发酵过程的新进展。Microbiology,F。(2016)。食品发酵的基本原理。食品微生物学:实践原理,228-252。发酵技术的原则和应用。(2018)。Sharma,R.,Garg,P.,Kumar,P.,Bhatia,S.K。,&Kulshrestha,S。(2020)。微生物发酵及其在发酵食品质量改善中的作用。发酵,6(4),1-20。关于作者:细菌在食品发酵,环境可持续性和行业发展中起着至关重要的作用。他们将糖转换为各种产品,影响风味,质地和燃料生存能力。同型细菌主要通过糖酵解途径产生乳酸。关键特征包括单一初始产品生产和有效的代谢过程。这些微生物在厌氧条件下壮成长,通常在低氧环境中发现。属的例子包括乳杆菌,链球菌和肠球菌。杂化细菌使用发酵糖的磷酸酶途径,生产多种产物,包括乳酸,乙醇,二氧化碳和乙酸。这种多功能性使它们对于发酵食品中的复杂风味和质地生产很有价值。代谢途径的比较揭示了同型和杂种细菌之间的关键差异。糖酵解途径是直接有效的,而磷酸化酶途径则产生来自各种糖的产物混合物。二氧化碳在酵中起着至关重要的作用,而乙醇则有助于各种产品中的口味发展。ATP产生效率比较,同型细菌在将葡萄糖转化为ATP方面更有效。 通常,这些细菌会产生每个葡萄糖分子代谢的两个ATP分子。 相比之下,由于副产品产生的能量损失,异位细菌通常产生的ATP较少。 在乳制品和乳制品行业中的作用,同型细菌对于产生酸奶和某些类型的奶酪至关重要,在需要高浓度的乳酸。 他们可预测的发酵过程可确保产品质量和口味一致。 杂种细菌用于需要较慢的酸化和更复杂的口味以及酸面团生产的奶酪中。 它们的发酵五胃能力使其非常适合用木质纤维素生物量生产生物燃料,木质纤维素生物量丰富且与食物来源不竞争。ATP产生效率比较,同型细菌在将葡萄糖转化为ATP方面更有效。通常,这些细菌会产生每个葡萄糖分子代谢的两个ATP分子。相比之下,由于副产品产生的能量损失,异位细菌通常产生的ATP较少。在乳制品和乳制品行业中的作用,同型细菌对于产生酸奶和某些类型的奶酪至关重要,在需要高浓度的乳酸。他们可预测的发酵过程可确保产品质量和口味一致。杂种细菌用于需要较慢的酸化和更复杂的口味以及酸面团生产的奶酪中。它们的发酵五胃能力使其非常适合用木质纤维素生物量生产生物燃料,木质纤维素生物量丰富且与食物来源不竞争。对乙醇和其他富尔斯植物类型的细菌的贡献参与生物燃料的产生,但异质细菌具有明显的优势,因为它们能够直接从发酵中产生乙醇。关键基因涉及发酵细菌的基因组成显着影响其发酵途径和效率。关键基因(例如同型细菌中的糖酵解酶和异源细菌中的磷酸酶途径)起着至关重要的作用。这些基因决定了代谢不同糖并产生不同副产品的能力。pH,温度和养分的影响发酵细菌的性能受到环境因素(例如pH,温度和可用养分)的严重影响:pH:两种类型的细菌通常在略微酸性的pH下繁殖,从而提高其生长和发酵效率。杂菌细菌倾向于具有更广泛的pH耐受性,从而有助于其多功能性。温度:最佳温度范围对于最大酶活性和生长至关重要。均质细菌偏爱30-40°C的温度,而异源细菌可以耐受温度范围的温度。工业发酵依靠特定的细菌菌株来生产所需的产品。营养的可用性会影响生长速率和代谢途径,并提供足够的供应,从而导致了强大的发酵过程。乳制品发酵展示了特异性影响:乳杆菌Delbrueckii亚种。保加利亚和嗜热链球菌有助于酸奶的风味和快速酸化。Brevis乳杆菌用于特种奶酪的生产中,通过乳酸,乙醇和二氧化碳生产产生复杂的口味。杂种细菌在生物燃料生产中发现了一个小众,将糖直接发酵成乙醇。Leuconostoc Mesenteroides的创新菌株已经过基因修饰,以提高乙醇产量,从而展示了可持续燃料生产的潜力。污染是一个重大挑战;常规的灭菌和封闭的发酵系统最大程度地降低了风险。菌株选择和遗传修饰会产生更强大的应变,使污染因子越发。优化发酵过程涉及诸如基因工程,过程优化以及对更好菌株的潜在修改等策略。基因工程可以提高糖的摄取和发酵效率,而过程优化可以调整参数以优化细菌的生长和生产力。发酵细菌的未来发展集中在基因工程上:发展具有较高浓度乳酸的耐受性的同质菌株可能会彻底改变生物塑料行业。工程杂化细菌可提高乙醇产量和其他有价值的副产品,将推动生物燃料和特种化学物质的创新。两种发酵细菌在环保解决方案中都起着关键作用:使用农业和食品工业的废物基板作为发酵的原料减少浪费并增强可持续性。生物技术方法的进步将继续提高这些细菌的效率和环境影响。细菌在可持续行业实践中起着至关重要的作用,同型和异性细菌是核心人物。同型细菌通过直接的代谢途径将糖转化为乳酸,导致高产和最小的副产品,使其适合乳制品和食品发酵。相比之下,杂菌细菌将糖代谢为各种副产品,包括乳酸,乙醇和二氧化碳,使它们可以在更广泛的发酵过程中使用,这些发酵过程需要复杂的口味和质地,例如某些奶酪和酸娃娃。由于步骤较少,能量损失较少,将糖转化为乳酸中同型细菌的能效较高,而杂菌细菌在单个过程中产生各种化学物质的能力被重视。两种细菌在食品工业中都是必不可少的,尤其是在乳制品和烘焙中,同型细菌对于生产酸奶和一些奶酪至关重要,而异性细菌在制造Kefir和Sauerkraut等产品方面起着关键作用。此外,他们正在探索它们在生物燃料生产中的潜力,尤其是将生物量转化为乙醇的潜力。这些细菌的利用代表了传统和创新行业的重要领域,提供了优化产品品质(例如风味,质地和营养价值)的机会,同时也有助于可持续实践和生物燃料开发。随着研究继续发现新的应用并改善了现有流程,这些微生物发电厂的未来看起来很有希望,并通过提高效率和可持续性对行业,消费者和环境带来了潜在的好处。
肺部疾病,例如慢性阻塞性肺部疾病,哮喘,社区获得性肺炎,囊性纤维化和COVID-19,是世界第二大死亡原因,成为了重大的健康挑战。因此,纳入纳米颗粒制剂(NP)的发育纳入了含有抗生素或抗病毒药的微粒系统(MPS),是改善这些肺部感情治疗的有前途的方法。政治丙酮酸(PCL)NP可能封装疏水性药物。因此,在这项工作中,我们开发了PCL NP,其磷脂封装了阿奇霉素(AZM)和respdivir(RDV),该溶剂通过乳液扩散蒸发而获得。nps导致在Zeta电势之间的动态光和-4.94和-5.06 eV之间的传播中,在动态光和-4.94和-5.06 eV之间的传播中,平均直径在184-208 nm和多分散性(PDI)之间,保持稳定6个月至4°C。随后,通过喷雾干燥以获得MPS干燥。喷涂干燥参数的优化导致100°C输入温度,64°C输出温度,600 L/h雾化流量,4.55 ml/min的流量和系统吸入70%,产量为63%。通过UV-VIS和HPLC光谱评估的封装效率分别为含有AZM和RDV的配方率为83%和87%。结果表明MPS是多孔球形结构,特定表面积为3.95 g/m 2。激光光衍射表明90%的颗粒为4.06和4.11 µm。粉末制剂的表征是根据形态,特定的表面积,粒径,化学结构,结晶度和扫描电子显微镜,物理学,激光衍射,红外光谱,X射线衍射和热分析的。FTIR分析表明,没有不必要的反应。衍射模式和量热测试表明,AZM和封装的RDV分散在固体聚合基质中。具有单个实习级联撞击剂的体外测试和多个阶段用于了解呼吸道不同部位的颗粒沉积,而39-42%的颗粒对应于可透气的透气分数。磁盘扩散测试表明,含有纳米封装的配方AZM对金黄色葡萄球菌和肺炎链球菌的抗菌作用保持抗菌作用,并具有抑制卤素≥18mm。HUVEC,HFF1和BEAS-2B细胞系表明含有AZM的分散体没有细胞毒性。关于含有RDV的NP,LDH细胞死亡试验表明,在感染SARS-COV-2的VERO E6细胞中使用免费或封装药物和抗病毒药测试之间没有显着差异。因此,两种含有AZM或RDV的配方都有治疗肺部疾病的潜力,并且开发的微观引血系统由一个可靠的肺部递送平台组成,也可以适用于其他抗生素和抗病毒药。
