药物研发和 COVID-19 疫情的最新进展表明,开发基于 RNA 的疫苗和针对人类疾病的 RNA 疗法非常重要。Nusinersen 和 risdiplam 是两种首创的脊髓性肌萎缩症药物,它们通过靶向 RNA 剪接恢复了功能性运动神经元蛋白。COVID-19 疫苗表明,mRNA 可用于以前所未有的速度生成高效疫苗。RNA 结构建模的进展现在可以精确地调节编码以前无法用药的蛋白质靶标的 RNA 的小分子。大量临床数据的积累验证了这些干预措施的有效性,促使人们在以 RNA 为重点的药物研发和治疗开发方面投入了大量研发资金。然而,目前的检测技术适用于蛋白质靶标而不是 RNA 靶标,阻碍了早期药物的发现。 Lucerna, Inc. 正在利用其荧光适体技术 (Spinach ™ ) 来实现靶标验证和高通量筛选 (HTS) 平台,以加速新的 RNA 药物发现。具体而言,我们开发了一个实时 RNA 成像平台,可以跟踪 mRNA 治疗递送、测量 RNA 半衰期并评估细胞中的 RNA 靶标参与度。此外,我们还开发了以下 HTS 平台,用于识别针对特定 RNA 致病机制的命中物:(1) 一种 HTS 检测,可直接测量由丙酮酸激酶 mRNA 剪接的小分子调节剂(一种关键的癌症代谢调节剂)引起的转录水平变化,(2) 一种 HTS 检测,可识别与 α-突触核蛋白的铁反应元件结合并调节其在帕金森病中的蛋白质翻译的小分子和/或反义寡核苷酸,以及 (3) 一种细胞检测,可报告在存在 RNA Pol III 抑制剂和 RNA 降解剂的情况下转录活性的变化。这些 HTS 检测平台克服了现有 RNA 靶向筛选技术中的几个主要问题,例如通量、蛋白质报告基因的使用、序列/结构特异性以及使用不能准确代表自然细胞环境的系统等。总之,Spinach™ 技术是一个 RNA 特异性平台,可以针对多种疾病机制,并有可能大大加速许多首创疗法的发现。
主要关键词