摘要背景:通过生物化学转化从可再生生物质中获得的生物燃料和增值生物化学品已引起广泛关注,以满足全球可持续能源和环境目标。异丁醇是一种四碳醇,具有许多优点,使其成为有吸引力的化石燃料替代品。运动发酵单胞菌是一种高效的厌氧产乙醇细菌,使其成为生物精炼厂的有前途的工业平台。结果:在本研究中,研究了异丁醇对运动发酵单胞菌的影响,并构建了各种生产异丁醇的重组菌株。结果表明,运动发酵单胞菌亲本菌株能够在低于 12 g/L 的异丁醇存在下生长,而浓度高于 16 g/L 会抑制细胞生长。运动发酵单胞菌中异丁醇生产需要整合编码 2-酮异戊酸脱羧酶的异源基因,例如来自乳酸乳球菌的 kdcA。此外,在由四环素诱导启动子 Ptet 驱动的含有 kdcA 基因的重组菌株中,异丁醇产量从接近零提高到 100–150 mg/L。另外,我们确定在表达 kdcA 的重组 Z. mobilis 菌株中过表达异源 als 基因和两个参与缬氨酸代谢的天然基因( ilvC 和 ilvD )可将丙酮酸从乙醇生产转移到异丁醇生物合成。这一工程将异丁醇产量提高到 1 g/L 以上。最后,确定了含有由 Ptet 驱动的合成操纵子 als - ilvC - ilvD 和由组成型强启动子 Pgap 驱动的 kdcA 基因的重组菌株大大提高了异丁醇产量,最高滴度约为 4.0 g/L。最后,异丁醇生产受到通气的负面影响,通气较差的烧瓶中会产生更多的异丁醇。结论:这项研究表明,kdcA 与合成异源操纵子 als - ilvC - ilvD 的过度表达对于将丙酮酸从乙醇生产中转移出来以增强异丁醇的生物合成至关重要。此外,这项研究还提供了一种利用缬氨酸代谢途径在 Z. mobilis 中生产其他丙酮酸衍生生物化学物质的策略。关键词:Zymomonas mobilis、生物燃料、异丁醇、代谢工程、丙酮酸衍生生物化学物质、2-酮异戊酸脱羧酶 (Kdc)
丙酮酸脱氢酶B(PDHB)是丙酮酸脱氢酶复合物的重要组成部分,与改变肿瘤代谢和促进恶性肿瘤有关。然而,PDHB对肝细胞癌(HCC)代谢重编程的特定影响及其在肿瘤进展中的作用仍有待阐明。在我们的研究中,我们发现了HCC内PDHB表达的明显升高,与延迟的肿瘤分期,肿瘤分级升高和预后结局降低相关。PDHB过表达驱动体外和体内肿瘤的生长和转移。从机械上讲,PDHB通过与SLC2A1,GPI和PKM2的启动子区域结合,介导了代谢重编程,从而促进了糖酵解相关的基因转录,从而有助于HCC索拉非尼替尼耐药。另外,同肌固定会是PDHB的靶向抑制剂,并对HCC发挥抗肿瘤作用。在小鼠异种移植模型中,同肌苷和索拉非尼的组合比单独的索拉非尼表现出明显更好的作用。总而言之,我们的研究证实了PDHB为一种能够预测HCC肿瘤进展的致癌耐药性相关基因。PDHB和等肌苷可能是肝癌靶向和联合疗法的潜在途径。
摘要:目前,中国的“浓缩物”,“浓缩物 +干草”和TMR“总混合口粮”进食模式的犊牛通常尚不清楚实际生产中的三种分子调节机制。这项研究旨在探索中国荷斯坦犊牛最合适的喂养模式,以改善瘤胃发酵功能和犊牛的生长性能。在这方面,研究了瘤胃微生物与宿主代谢之间的相互作用。GF组的瘤胃体积和犊牛的重量显着高于GFF和TMR组中的瘤犊牛(P <0.05),而GF组的犊牛瘤pH值为6.47〜6.79。宏基因组学分析表明,GF和GFF犊牛的瘤胃微生物组的相对丰度较高,甲烷二磷,甲烷磷和甲诺氏菌具有较高的相对丰度(p <0.05)。prevotella多含糖果在GF犊牛的瘤胃中(p <0.05)的含量更高,这表明GF组犊牛具有更强的发酵糖的能力。值得注意的是,与TMR组相比,在丙酮酸代谢途径中,在GF犊牛中显着上调了磷酸烯醇丙酮酸羧化酶,并且丙酮酸磷酸二酮酶显着下调。代谢组学结果表明,在GF犊牛中,Ursodoxycholic的上调显着上调,并且大多数差异代谢产物都富含胆汁分泌途径。协会分析研究发现,Prevotella和Ruminococcaceae的微生物可能与宿主合作,这有助于消化和吸收脂质,并使犊牛的生长更好。这三种喂养模式具有相似的效果,但是“ GF”喂养模式对有关瘤胃形态,含量生理学和微生物的个人生长和瘤胃发展更为有益。此外,瘤胃微生物和宿主的协同作用可以更有效地水解脂质物质并促进脂质的吸收,这对犊牛的生长具有很大的意义。
形状记忆聚合物属于一类智能材料,能够响应特定的刺激,例如温度,电力或磁场。聚苯乙酮是脂肪族聚酯家族的可生物降解聚酯的一个例子,由于其独特的机械性能,与各种聚合物的兼容性和生物降解性,该脂肪酯家族已被广泛研究。在这项即将进行的研究中,已经添加了不同量的多丙酮酸酮,以研究其对由聚氨酯/聚氨酯/多丙烯酸酯/氧化石墨烯组成的智能聚合物纳米复合材料的热机械行为的影响。使用分子动力学仿真技术和LAMMPS软件,已评估了该设计的纳米复合材料的热,机械和原子特性。这项研究的结果表明,通过将多丙酮酸的含量从10%增加到50%,模型的纳米复合材料中的热通量和导热率从688.43增加到724.03 W/m 2,从0.85 w/m 2增加到0.85 w/m。此外,将多碳酸酯的数量从10%增加到50%,导致最终强度和研究的纳米复合材料的Young型模量从56.32增加到62.23 MPa,并从5.99增加到5.99 mpa,从5.99增加到6.29 MPa。随着多碳酸酯的量增加,均方根位移参数和玻璃过渡温度已收敛到0.31Å2和331 K。
描述EP1563Y重组单克隆抗体与乳酸脱氢酶(LDH)结合。该四聚体细胞质酶属于2-羟基酸氧化还原酶家族,其亚基由LDHA,LDHB,LDHC和LDHD基因编码。EP1563Y专门识别LDH-A,LDH-B和LDH-C。 LDH-A and LDH-B can form 5 tetrameric isoenzymes: LDH-1 (highly expressed in heart and erythrocytes), LDH-2 (reticuloendothelial system, erythrocytes), LDH-3 (lungs), LDH-4 (kidneys) and LDH-5 (liver, skeletal muscle, brain). LDH-C在睾丸中特异性表达。 LDH在厌氧代谢途径中具有关键作用,因为它在可逆反应中催化乳酸和丙酮酸的合成,是糖生成和DNA代谢的重要检查点。 LDH被某些疾病(例如癌症)中的细胞过表达,并且由于受伤或疾病引起的组织损伤,可以释放到血液中。EP1563Y专门识别LDH-A,LDH-B和LDH-C。 LDH-A and LDH-B can form 5 tetrameric isoenzymes: LDH-1 (highly expressed in heart and erythrocytes), LDH-2 (reticuloendothelial system, erythrocytes), LDH-3 (lungs), LDH-4 (kidneys) and LDH-5 (liver, skeletal muscle, brain).LDH-C在睾丸中特异性表达。LDH在厌氧代谢途径中具有关键作用,因为它在可逆反应中催化乳酸和丙酮酸的合成,是糖生成和DNA代谢的重要检查点。LDH被某些疾病(例如癌症)中的细胞过表达,并且由于受伤或疾病引起的组织损伤,可以释放到血液中。
D.基因编辑引入的性状的描述是除草剂抗性。通过使用碱基编辑器的特定碱基转变到O. sativa和T. aestivum的HPPD蛋白中产生的突变(Zong等,2018)。此外,由于对HPPD抑制除草剂的敏感性降低而获得了突变的HPPD酶。例如,获得了源自假单胞菌菌株A32的HPPD突变体G336W(Matringe等人。2005)。 活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。 另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。 2014; Siehl等。 2014)。 该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。 基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。 2018)。 尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。 靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。 将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。2005)。活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。2014; Siehl等。2014)。该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。2018)。尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。hppd是来自不同化学家族的除草剂的靶位部位,例如依氧唑(isoxaflutole和pyrasulfotole),吡唑酮(topramezone)和triketones(Mesotrione,Bicyclopyrone和tembotrione)(Lee等人)(Lee等人,1998年)。用这些除草剂治疗后,由于胡萝卜素合成的丧失,易感植物表现出漂白症状,并最终导致细胞膜的脂质过氧化。
图1 Yarrowia脂溶性固体箭头中脂质代谢的概述:化学转换和运输反应,虚线箭头:多个化学转换步骤,虚线和箭头:代表N-限制后果。AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]
结果:与对照处理相比,TMAO(120 mg/kg)的给药14周增加了心脏组织中的TMAO浓度高达14次。MCT治疗导致线粒体功能受损,右心室功能参数降低。 尽管TMAO治疗本身降低了线粒体脂肪酸氧化依赖性呼吸,但未观察到对心脏功能的影响。 长期TMAO给药可通过保留脂肪酸氧化并随后降低丙酮酸代谢,从而防止了MCT障碍的线粒体能量代谢。 在右心室心力衰竭的实验模型中,TMAO对能量代谢的影响导致了恢复右心室功能的趋势,如超声心动图参数和归一化器官到体重指数所示。 同样,MCT组的心力衰竭严重程度标记物(脑纳替肽)的表达大大增加,但倾向于恢复到TMAO + MCT组中的控制水平。MCT治疗导致线粒体功能受损,右心室功能参数降低。尽管TMAO治疗本身降低了线粒体脂肪酸氧化依赖性呼吸,但未观察到对心脏功能的影响。长期TMAO给药可通过保留脂肪酸氧化并随后降低丙酮酸代谢,从而防止了MCT障碍的线粒体能量代谢。在右心室心力衰竭的实验模型中,TMAO对能量代谢的影响导致了恢复右心室功能的趋势,如超声心动图参数和归一化器官到体重指数所示。同样,MCT组的心力衰竭严重程度标记物(脑纳替肽)的表达大大增加,但倾向于恢复到TMAO + MCT组中的控制水平。
a) 恰加斯病血清学检测——通过两种不同的方法检测 IgG; b) 全血细胞计数; c)空腹血糖; d) 肌酐 e) HBsAg; f) 抗-HBcIgG(如呈阳性,则进行 DNA PCR - 乙肝病毒聚合酶链反应); g)抗-HCV(如呈阳性,则进行PCR RNA-丙型肝炎病毒聚合酶链反应); h)谷氨酸丙酮酸转氨酶(GPT); i)谷氨酸-草酰乙酸转氨酶(GOT); j) 碱性磷酸酶(AP)k) γ-谷氨酰转移酶(Gamma-GT); l)促甲状腺激素(TSH); m) 凝血图:AP、INR 和 PTTa。 2.尿液:
摘要:要治疗慢性疾病或其他严重疾病,经常要求患者长时间服用处方药。但是,对于大多数患者而言,频繁且冗长的剂量时间表通常具有挑战性。长效肠胃外制剂(LAPF)比传统的几种疾病中的传统配方更可取。通过延长药物管理时间的释放,LAPF可以提高患者的依从性,从而增加治疗结果。基于可生物降解的聚合物长效注射制剂,由于其实质性生物利用度,改善封装,受控释放和较小的毒性特征,经常被用作药物输送系统。本综述讨论了各种可生物降解的聚合物,包括PLGA,多丙酮酸,透明质酸和用于长效注射配方的白蛋白,并使用可生物降解的聚合物封装各种药物的工作报告。