蛋白激酶D(PKD)家族是丝氨酸 - 苏氨酸激酶的家族,是钙/钙调蛋白依赖蛋白依赖性激酶(CAMK)超家族的成员。PKD越来越多地与多个关键的细胞过程和病理条件有关。PKD失调与多种疾病有关,包括癌症,炎症和肥胖。在过去的几年中,小分子抑制剂已成为替代靶向治疗,其不良副作用比当前可用的化学疗法少,并且这些特定靶向靶向的抑制剂限制了非特异性毒性。PKD抑制剂的成功发展将显着抑制各种癌症的生长和增殖,并抑制其他疾病的发展。在临床前环境中已经研究了各种PKD抑制剂。在这种情况下,我们总结了正在研究的PKD抑制剂及其对各种疾病的应用。
研究文章比较研究在油漆废水(PWW)M. Ikenna Ejimofor上使用基于动物的Chito-蛋白和硫酸铝的去除浊度颗粒(TDSP)的比较研究* 1,Matthew Chukwudi Menkiti 2,3,Ifechukwu G. Ezemagu 2 1,3 尼日利亚; OrcID:0000-0001-6486 2化学工程。尼日利亚AWKA的Nnamdi Azikiwe大学系; ORCID:0000-0002-2095-7294 3美国德克萨斯州拉伯克大学水资源中心的民用与环境工程系; ORCID:0000-0003-1311-3031收到:12.02.2020修订:06.06.2020接受:13.06.2020摘要摘要比较参数统计的比较有效去除浊度粒子粒子(TDSP)的参数统计数据(TDSP)与提取的自然凝结剂使用“ cpw”(cp)(cp)(pp)和铝糖含量成功,并已硫酸盐(P.) PWW相对于可放电废水的国家环境调节标准为100mg/L的国家环境调节标准,其中包含2669mg/l。 使用改良的Fernandez-Kin方法从蜗牛壳面粉(SSF)提取 CP。 提取的CP主要含有蛋白质(86%)。 从主要官能团中观察到赖氨酸,缬氨酸,丝氨酸和苯丙氨酸的FTIR分析痕迹(NH 3 )尼日利亚AWKA的Nnamdi Azikiwe大学系; ORCID:0000-0002-2095-7294 3美国德克萨斯州拉伯克大学水资源中心的民用与环境工程系; ORCID:0000-0003-1311-3031收到:12.02.2020修订:06.06.2020接受:13.06.2020摘要摘要比较参数统计的比较有效去除浊度粒子粒子(TDSP)的参数统计数据(TDSP)与提取的自然凝结剂使用“ cpw”(cp)(cp)(pp)和铝糖含量成功,并已硫酸盐(P.)PWW相对于可放电废水的国家环境调节标准为100mg/L的国家环境调节标准,其中包含2669mg/l。CP。提取的CP主要含有蛋白质(86%)。从主要官能团中观察到赖氨酸,缬氨酸,丝氨酸和苯丙氨酸的FTIR分析痕迹(NH 3
电子邮件:tereza.smejkalova@fgu.cas.cz简介由Grin Genes编码的N-甲基-D-天冬氨酸受体(NMDARS)是离子型谷氨酸受体,它们是中枢神经系统中几乎所有兴奋性突触的离子谷氨酸受体。经典的NMDAR具有特征性的生物物理特征,需要两种激动剂(谷氨酸和甘氨酸/ D-丝氨酸)的结合,在静息膜电位上,Mg 2+的强阻滞,高Ca 2+渗透性,相对较慢的激活和减速性动力学Kinetics [1]。这些特性使NMDAR可以作为突触前谷氨酸释放和突触后去极化的巧合探测器,从而去除Mg 2+块。所得的NMDAR介导的Ca 2+流入是一个关键信号,该信号调节了突触强度的活动依赖性变化[2],它是神经回路及其
人类糖蛋白 α-1-抗胰蛋白酶 (AAT) 是一种丝氨酸蛋白酶抑制剂,其病理变体会错误折叠并形成自缔合聚合物,与 AAT 缺乏症有关。生化分析表明,AAT 在核糖体翻译过程中自然停滞,并形成强制性压缩中间体,该中间体在翻译后完成折叠,但在存在 Z 突变时容易发生错误折叠 (1)。在本项目中,我们旨在使用 19F NMR 光谱法表征核糖体上 AAT 中间体的结构。目前,19F NMR 是唯一能够直接观察共翻译折叠中间体的实验技术 (2),而位点特异性标记允许分别通过化学位移分析和顺磁弛豫增强测量获取短程和长程结构信息。
AKT,蛋白激酶B; AMPK,单磷酸腺苷激活的蛋白激酶; ASR,适应性应激反应; ATG13,自噬相关蛋白13;出价,每天两次; CRO,临床研究组织; del,删除; DMSO,二甲基磺氧化物; ELISA,酶联免疫吸附测定; ERK,细胞外信号 - 调节激酶; GFP,绿色荧光蛋白;要点,胃肠道肿瘤; IC 50,最大抑制浓度的一半; LC3,微管相关的蛋白质轻链3; MAPK,有丝分裂原激活的蛋白激酶; Mek,Mapk激酶; MTOR,雷帕霉素的哺乳动物靶标; PATG13,磷酸化ATG13; PI3K,磷酸肌醇3-激酶; RAF,快速加速的纤维肉瘤丝氨酸/苏氨酸激酶; Ras,大鼠肉瘤小GTPase蛋白; Rheb,Ras同源物富含大脑; RTK,受体酪氨酸激酶; SEM,平均值的标准误差; TGI,肿瘤生长抑制; ULK,UNC-51样的自噬激活激酶。AKT,蛋白激酶B; AMPK,单磷酸腺苷激活的蛋白激酶; ASR,适应性应激反应; ATG13,自噬相关蛋白13;出价,每天两次; CRO,临床研究组织; del,删除; DMSO,二甲基磺氧化物; ELISA,酶联免疫吸附测定; ERK,细胞外信号 - 调节激酶; GFP,绿色荧光蛋白;要点,胃肠道肿瘤; IC 50,最大抑制浓度的一半; LC3,微管相关的蛋白质轻链3; MAPK,有丝分裂原激活的蛋白激酶; Mek,Mapk激酶; MTOR,雷帕霉素的哺乳动物靶标; PATG13,磷酸化ATG13; PI3K,磷酸肌醇3-激酶; RAF,快速加速的纤维肉瘤丝氨酸/苏氨酸激酶; Ras,大鼠肉瘤小GTPase蛋白; Rheb,Ras同源物富含大脑; RTK,受体酪氨酸激酶; SEM,平均值的标准误差; TGI,肿瘤生长抑制; ULK,UNC-51样的自噬激活激酶。
背景:癌症患者比普通人群更容易受到严重急性呼吸综合症2(SARS-COV-2)感染的影响,其中肺上皮细胞或肠细胞是主要靶标。然而,尚未完全阐明机场消化剂癌中SARS-COV-2入门基因的表达。方法:在这项研究中,全面评估了SARS-COV-2受体和辅因子的表达,包括血管紧张素I-转换酶2(ACE2),BASIGIN(BSG)和跨膜丝氨酸丝氨酸Pro Tease 2(TMPRSS2)。我们通过基因表达分析互动分析2(GEPIA2)比较了机化癌和匹配正常组织之间的BSG和TMPRSS2表达式。此外,使用基因型 - 组织表达(GTEX)数据集探索了不同解剖位置的健康结肠组织中的表达。此外,通过GEPIA2检测到不同肿瘤阶段和预后值之间的表达。此外,通过肿瘤免疫估计资源(计时器)探索了基因表达与免疫浸润之间的相关性。最后,使用基因表达综合(GEO)数据集GSE41258研究了原发性结直肠癌(CRC),肺转移和肝转移的表达。结果:类似于ACE2,TMPRSS2和BSG,也在消化道中高度表达。有趣的是,相邻正常结肠组织或肺组织中的BSG/TMPRSS2表达高于相应的健康组织中的BSG/TMPRSS2,而它们在不同的肿瘤阶段的变化不变,并且在消化剂癌症中不与预后相息。此外,ACE2在CRC的肺转移中比正常肺组织中的肺转移水平更高。结论:SARS-COV-2进入基因在CRC中高度表达,我们首次报道了CRC的肺转移中ACE2的表达高于正常肺中的ACE2,这表明这些患者可能更容易受到肺外或肺SARS-COV-COV-2感染的影响。由于我们的研究是生物信息学分析,因此迫切需要进一步的实验证据和临床数据。关键字:ACE2,BSG,TMPRSS2,COVID-19,Aerodivide Cancers
抑制人尿激酶型纤溶酶原活化剂(HUPA)是一种在细胞细胞蛋白水解中起重要作用的丝氨酸蛋白酶,是降低肿瘤细胞浸润性和转移活性的有前途策略。然而,由于HUPA与其他旁拉丝氨酸蛋白酶的高结构相似性,选择性小分子HUPA抑制剂的产生已被证明是具有挑战性的。产生更具体疗法的努力导致了基于环状肽的抑制剂的发展,对HUPA的选择性更高。虽然需要后一种特性,但在临床前小鼠模型中,直系同源物鼠的保留却带来了抑制剂测试的困难。在这项工作中,我们采用了一种基于达尔文进化的方法来识别HUPA的噬菌体编码的双环肽抑制剂,对Murine UPA(MUPA)具有更好的交叉反应性。最佳选择的双环肽(UK132)分别抑制了HUPA和MUPA,K I值分别为0.33和12.58 µm。抑制作用似乎对UPA是特定的,因为UK132仅弱抑制了一组结构相似的丝氨酸蛋白酶。去除或取代第二个环,一个未在体外进化的循环导致效力低于UK132的单核细胞和双环肽类似物。交换1,3,5- Tris-(溴甲基) - 苯苯,其与噬菌体选择中未使用不同的小分子的苯二苯,导致效力降低了80倍,揭示了分支环化连接器的重要结构作用。UK132中精氨酸的进一步亚属菌对赖氨酸的进一步构成,导致了对HUPA(K I = 0.20 µM)和鼠直系同源物(K I = 2.79 µm)的抑制效力增强的双环肽UK140。通过结合良好的特异性,纳摩尔亲和力和低分子质量,在这项工作中开发的双环肽抑制剂可能会为发展有效和选择性的抗反转移疗法的发展提供新颖的人类和鼠交叉反应性铅。
受体相互作用丝氨酸/苏氨酸蛋白激酶2(RIPK2)作为炎症和先天免疫的重要介质,负责将信号传导至细胞内肽聚糖传感器核苷酸寡聚化结构域(NOD)样受体1和2(NOD1/2)下游,从而进一步激活核因子κB(NF- κ B)和丝裂原活化蛋白激酶(MAPK)通路,导致促炎性细胞因子的转录激活并产生炎症反应。因此,NOD2-RIPK2信号通路因其在许多自身免疫疾病中的重要作用而受到广泛关注,使得药物抑制RIPK2成为一种有前途的策略,但对于其在免疫系统之外的作用知之甚少。最近,RIPK2与肿瘤发生和恶性进展有关,迫切需要针对性的治疗。本文主要对RIPK2作为抗肿瘤药物靶点的可行性进行评估,并综述RIPK2抑制剂的研究进展,更重要的是,结合以上内容,分析小分子RIPK2抑制剂应用于抗肿瘤治疗的可能性。
丝氨酸/精氨酸富含剪接因子3(SRSF3)是一个重要的多功能剪接因子,在过去三十年中引起了人们的注意。SRSF3的重要性是由所有动物中令人印象深刻的保守蛋白序列和替代外显子4所证明的,这代表了一种自动调节机制,可维持其适当的细胞表达水平。最近一直发现SRSF3的新功能,尤其是其致癌功能。srsf3通过调节许多靶基因的RNA生物发生和加工的几乎所有方面,在许多靶基因的过程中起着至关重要的作用,因此在过表达或无调时会导致肿瘤发生。本综述更新并突出了SRSF3的基因,mRNA和蛋白质结构,SRSF3表达的调节机制以及SRSF3靶标的特征和结合序列,这些序列有助于SRSF3在肿瘤和人类疾病中有助于多样的分子和细胞功能。
目前,肿瘤治疗主要包括手术、放疗、化疗、免疫治疗和分子靶向治疗,其中放疗是主要支柱之一,但放射抗性的发生很大程度上限制了其治疗效果。代谢重编程是肿瘤进展和治疗抗性的重要标志,在放疗中,DNA断裂是造成细胞损伤的主要机制,而癌细胞容易增加葡萄糖、谷氨酰胺、丝氨酸、精氨酸、脂肪酸等代谢通量,为DNA损伤修复提供充足的底物和能量。因此,研究代谢重编程与肿瘤放射抗性的联系可能为提高肿瘤治疗效果提供新思路。本综述主要关注葡萄糖、氨基酸、脂质、核苷酸等离子代谢等代谢改变在放射抗性中的作用,并提出可能的治疗靶点,以改善肿瘤放疗的疗效。