人类中枢神经系统 (CNS) 中的成熟神经元在受伤后无法再生。这是不同病因的共同点,包括多发性硬化症、脊髓损伤和缺血性中风。再生障碍会导致永久性功能障碍,严重影响患者的生活质量,给全世界带来沉重的社会经济负担。人们付出了巨大的努力来揭示导致这一现象的机制,现在我们知道强大的细胞内和细胞外屏障会阻止轴突修复。这些知识促成了许多临床试验,旨在通过不同的方法促进神经再生。在这里,我们总结了目前对人类中枢神经系统再生不良原因的理解。我们还回顾了迄今为止已转化为临床试验的治疗尝试的结果。
历史上,胰岛β细胞一直被视为血糖的主要调节器,当胰岛素分泌无法补偿外周组织胰岛素抵抗时,就会导致 2 型糖尿病 (T2D)。然而,血糖也受胰岛素非依赖性机制的调节,而这些机制在 T2D 中失调。有证据表明,中枢神经系统 (CNS) 在胰岛素分泌与胰岛素敏感性变化的适应性耦合以及胰岛素非依赖性葡萄糖处置的调节中都发挥着作用,因此,中枢神经系统 (CNS) 已成为血糖稳态的基本参与者。在这里,我们回顾并扩展了一个整合模型,其中 CNS 与胰岛一起建立和维持防御的血糖水平。我们讨论了该模型对于理解正常血糖稳态和 T2D 发病机制的意义,并强调了可能恢复 T2D 患者正常血糖的集中靶向治疗方法。
它们是良性还是恶性(即癌性),肿瘤是由细胞形成的,这些细胞以非常持续的方式繁殖。最大的差异是转移潜力。良性肿瘤细胞没有入侵其他器官的能力。相反,癌细胞具有影响环境中细胞的能力,例如刺激血管的产生,修改其发展的组织的结构或
图 1. 两种 iPSC 系的干细胞表征示例。(A)TaqMan hPSC Scorecard Panel 将样本的基因表达谱与参考集的基因表达谱进行比较(分别为彩色点和灰色箱线图)。该检测使用超过 90 个基因和 13 个 PSC 的静态数据库进行比较。(B)PluriTest 检测使用微阵列数据根据多能性评分(反映多能性程度)和新颖性评分(反映分化程度)确认多能性标记表达。该检测使用超过 36,000 个转录本和超过 450 种细胞和组织类型的流体参考集进行比较。(C)KaryoStat+ 检测提供全基因组覆盖,可准确检测拷贝数变化和基因组畸变。
1 tES 设备和提供剂量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 8 2.2 自粘式一体化电极....................................................................................................................................................................................................... 8 2.3 高清(HD)电极....................................................................................................................................................................................................... 8 2.3 高清电极....................................................................................................................................................................................................................... 8 2.4 高清电极....................................................................................................................................................................................................................... 8 . . . . . . 9 2.4 手持导体上的游离电解液. . . . . . . . . . . . . . . 11 2.5 导电橡胶电极上的游离糊剂. . . . . . . . . . . . . . . . 11 2.6 干电极. . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 11 2.7 预盐化电极............................................................................................................................................................................................................................................................................................................................. 11 3 电极电阻............................................................................................................................................................................................................................................................................................................................................. 11 3 电极电阻.................................................................................................................................................................................................................................................................................................................... 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .................................................................................................................................................................................19 9 讨论:争议和未来方向....................................................................................................................................................................................................................................................................20 参考文献....................................................................................................................................................................................................................................................................... ... .... .... .... 21
近年来,肠道菌群与中枢神经系统 (CNS) 发育之间的关联引起了广泛的研究关注。有证据表明,CNS 和肠道菌群通过脑肠轴进行双向交流。作为一个长期而复杂的过程,CNS 发育极易受到内源性和外源性因素的影响。肠道菌群通过调节神经发生、髓鞘形成、神经胶质细胞功能、突触修剪和血脑屏障通透性来影响 CNS,并与各种 CNS 疾病有关。本综述概述了肠道菌群与 CNS 发育阶段(产前和产后)之间的关系,强调了肠道微生物的不可或缺的作用。此外,本综述还探讨了肠道菌群在神经发育障碍(如自闭症谱系障碍、雷特综合征和安格曼综合征)中的影响,为早期发现、及时干预和创新治疗提供了见解。
对复杂疾病(例如糖尿病)遗传基础的机械理解在很大程度上是由于影响疾病表型的渗透率和/或表现的遗传疾病改良剂的活性而难以捉摸。面对这种复杂性,单基因突变(单基因糖尿病)引起的罕见形式可用于模拟单个遗传因素对胰腺B细胞功能障碍的贡献和葡萄糖稳态的分解。在这里,我们回顾了蛋白质编码和非蛋白质编码遗传疾病修饰对糖尿病亚型发病机理的贡献,以及人类多能干细胞(HPSC)的生成,分化和基因组编辑的最新技术进步如何启用基于细胞疾病模型的发展。最后,我们描述了一种疾病修饰的发现平台,该平台利用这些技术使用诱导的多能干细胞(IPSC)鉴定出新的遗传修饰者,这些干细胞(IPSC)源自由杂合突变引起的单基因糖尿病患者。
图2:B-1A细胞在发育过程中B-1A细胞的少突胶质细胞的发育控制机理,B细胞被CXCL13从血液中吸引,CXCL13是由脉络膜丛产生的,并被定位于边界区域,例如脉络膜丛和脑膜。这些B细胞将其性质变成B-1A细胞,产生天然抗体,促进OPC的生长并控制少突胶质细胞的成熟。
这是一份已获准发表的同行评审论文的 PDF 文件。尽管未经编辑,但内容已进行初步格式化。《自然》杂志将这份排版论文的早期版本作为一项服务提供给我们的作者和读者。在论文以最终形式发表之前,文本和图表将经过文字编辑和校对。请注意,在制作过程中可能会发现可能影响内容的错误,所有法律免责声明均适用。