生物催化剂因其精致的立体化学而受到倡导,但是测量对映体多余的色谱分离速度缓慢,可以瓶颈它们的发展。为了克服这一限制,我们生成对映选择性转录因子(ETF),将对映异构体特异性分析物浓度转换为可编程基因表达输出。使用大量平行的报告基因测定法,我们测量了300,000多个转录因子变体的剂量反应曲线,以响应对映体中间体和药物溶性溶性的术前体。利用这个全面的数据集,我们定量比较由随机,位点饱和和shu thu诱变产生的变体的灵敏度,选择性和动态范围,从而使ETF分离具有特殊的特异性特异性。高分辨率结构进一步阐明了四个动物如何实现对映选择性和电荷相互作用,使亚胺反应产物与亚胺前体不同。最后,我们使用两个ETF来创建高通量手性屏幕,我们将其与荧光激活的细胞排序配对,以倒置的对映选择性发展亚胺还原酶。此方法为不对称反应筛选提供了一种快速且可扩展的方法,从而促进了药物制造的生物催化剂设计的进步。
为了表征有机sem iConductor中的内在电荷传输过程,必须最小化外部效应(例如接触电阻,非理想的污染物和外部污染物)的外在效应的影响。[1–3]半导体介电界面对于电荷传输至关重要,因为陷阱和表面粗糙可以阻止有效的电荷转移。[4,5]虽然表面粗糙度易于表征,例如,使用原子力显微镜(AFM)及其来源很容易识别,但[6]对于电活动陷阱而言,这是高度无琐的。此类陷阱通常与有机场效应晶体管(OFET)中使用的介电的影响有关,因为介电常数和其他内在特性会影响电荷转运。[4,5,7-10]为了减少半导体 - 二元界面处的捕获(例如,水和其他固有或外在陷阱),典型的是,表面是由于使用自组装单层(SAMS)而被钝化的。[11]最近还用本质上惰性的六角硼(H-BN)用作介电,其目标是实现无陷阱界面。[12–14]
摘要:在本研究中,我们描述了一种将芳烃掺入封闭管(我们将其命名为胶囊烯)的合成方法。首先,我们制备了花瓶状的分子篮 4 – 7 。这些分子篮由一个苯碱基和三个双环[2.2.1]庚烷环融合而成,这些环延伸到邻苯二甲酰亚胺 ( 4 )、萘二甲酰亚胺 ( 6 ) 和蒽二酰亚胺侧 ( 7 ),每个侧都带有一个二甲氧基乙烷缩醛基团。在催化三氟乙酸 (TFA) 的存在下,4、6 和 7 顶部的缩醛转变为脂肪族醛,随后在分子内环化为 1,3,5-三氧杂环己烷(1 H NMR 光谱)。这种环闭合几乎是一个定量过程,它提供了不同大小的胶囊烯 1 (0.7×0.9 纳米)、8 (0.7×1.1 纳米;) 和 9 (0.7×1.4 纳米;),这些胶囊烯的特征是 X 射线晶体学、微晶电子衍射、紫外/可见光、荧光、循环伏安法和热重法。胶囊烯具有出色的刚性、独特的拓扑结构、出色的热稳定性以及可能可调的光电特性,有望用于构建新型有机电子设备。
Morelle Raïsa Djiaala Tagne、Mireille Ebiane Nougang、Edith Brunelle Mouafo Tamnou、Awawou Manouore Njoya、Pierrette Ngo Bahebeck、Samuel Davy Baleng、Paul Aain Nana、Yves Yogne Poutoum、Genevieve Bricheux、Claire Stéphane Metsopkeng、Télesphore Sime-Ngando 和 Moïse Nola DOI: https://doi.org/10.22271/micro.2023.v4.i1b.72 摘要 这项研究评估了在雅温得(喀麦隆)的井和雨水样本中分离的蜡状芽孢杆菌、苏云金芽孢杆菌和枯草芽孢杆菌菌株的抗生素敏感性。在长旱季 (LDS)、短旱季 (SDS)、长雨季 (LRS) 和短雨季 (SRS) 期间每月收集水井水样,对于雨水则在 LRS 和 SRS 期间收集。考虑的抗生素包括亚胺培南、阿米卡星、庆大霉素、环丙沙星、氧氟沙星、磺胺甲唑和四环素。对于来自地下水的菌株,对于苏云金芽孢杆菌,抗生素抑制直径从 9.13 毫米(SDS 期间的磺胺甲唑)到 32.78 毫米(LDS 期间的亚胺培南),对于蜡状芽孢杆菌,抗生素抑制直径从 8.2 毫米(SDS 期间的磺胺甲唑)到 35.25 毫米(LDS 期间的亚胺培南)不等,对于枯草芽孢杆菌,抗生素抑制直径从 5.05 毫米(LRS 期间的氧氟沙星)到 29.25 毫米(LDS 期间的亚胺培南)。雨水中的芽孢杆菌直径从 4.55 mm(LRS 期间使用磺胺甲唑)到 25.65mm(LRS 期间使用亚胺培南),蜡状芽孢杆菌从 2.13 mm(LRS 期间使用亚胺培南)到 20.05mm(SRS 期间使用亚胺培南),枯草芽孢杆菌从 5.03 mm(SRS 期间使用庆大霉素)到 25.15mm(SRS 期间使用四环素)。LRS 期间分离出的芽孢杆菌菌株对大多数抗生素具有多重耐药性。大多数抗生素的抑菌直径在不同季节之间存在显著差异(p<0.05)。关键词:抗生素敏感性,芽孢杆菌菌株,地下水和雨水,抑菌直径变化 1. 引言 不同国家的水消耗量差异很大。这取决于其发展、人口和资源本身。当水被污染时,水会成为许多疾病的主要传播媒介之一,而这些疾病是导致人类或动物大规模流行病的原因。污染源包括河流、水体、咸水以及雨水、露水、雪和极地冰。每种环境中的水都可能被化学物质和微生物污染,包括原生动物、病毒和细菌 [1] 。水环境中有各种细菌科。这些微生物具有各种特性。通常用于识别细菌微生物的一些特性是革兰氏染色细胞壁和产孢特性。芽孢杆菌属细菌被称为革兰氏阳性菌和产孢菌。它们存在于空气、水中或土壤中 [2] 。对于人类来说,一些芽孢杆菌种是病原体或机会性病原体,而另一些只是共生菌。然而,细菌的共生特性取决于其环境中的几个因素 [3] 。除了食物中毒外,这些细菌会引起局部和全身感染,有时会导致患者死亡 [4, 5] 。多年来,人们也认识到生物颗粒对大气过程的潜在相关性 [6, 7] 。空气中的生物颗粒作为一个整体也被称为生物气溶胶。它们可以包括细菌细胞和细胞碎片、真菌孢子和真菌
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个
(HO)通过在适当的光照射下在肿瘤中获得的光敏剂(PS)的光激发(PS)。3,4 PDT过程可以分为I型和II型,具体取决于PS与其附近的ps触发反应。3,4具体,I型反应涉及氢原子抽象或电子转移,最终导致自由基和过氧化氢的形成(H 2 O 2),而II型II型通过从电子激发的三胞胎PS到地面分子氧的能量转移导致单线氧(1 O 2)的产生。3,4 II型PDT是主要机制,因为大多数PSS是II型。3,4不幸的是,这种对周围氧气的依赖性与肿瘤缺氧的固有特性相矛盾。缺氧是由于快速癌细胞增殖和不规则的血管生成,在实体瘤的微环境中发现了一个显着而重要的特征。5与在大多数健康组织中发现的40-60 mmHg范围相比,肿瘤低氧区域中的氧气通常降至10 mmHg以下。6因此,由于II型PDT高度依赖氧浓度,因此低氧肿瘤
热塑性树脂,有时称为工程塑料,包括一些聚酯、聚醚酰亚胺、聚酰胺酰亚胺、聚苯硫醚、聚醚醚酮 (PEEK) 和液晶聚合物。它们由长而离散的分子组成,在加工温度下熔化为粘稠液体,通常为 500” 至 700” F (260° 至 3710 C),成型后冷却为无定形、半结晶或结晶固体。结晶度对最终基质性能有很大影响。与热固性树脂的固化过程不同,热塑性塑料的加工是可逆的,并且只需重新加热到加工温度,树脂就可以根据需要形成另一种形状。热塑性塑料虽然在高温强度和化学稳定性方面通常不如热熔胶,但更耐开裂和冲击损伤。然而,值得注意的是,最近开发的高性能热塑性塑料,如具有半结晶微结构的 PEEK,表现出优异的高温强度和耐溶剂性。
本评论文章提供了利用非富勒烯受体(NFAS)的有机太阳能电池(OSC)的摘要,重点是二基吡咯吡咯(DPP),萘二酰亚胺(NDI)和二二酰亚胺 - 二酰亚胺(PDI)以及挑战。它强调了PDI,NDI和DPP的表征,尤其是它们的光学,结构和热性能。本文研究了取代基对NFA的分子和电子特性的影响,包括它们对光学,电,溶解性和分子间相互作用特性的影响。在提高NFA在有机半导体开关中的效率方面的进展,功率转换效率超过13%。还考虑了该领域进步的未来前景。该研究探讨了各种取代基对NDI衍生物(如五氟苯基,二苯基甲基甲基,2-硝基苯基,IPRP-NDI,DPM-NDI,dPM-NDI,NO2-NDI)等NDI衍生物的分子结构,光伏性能的影响。这些取代基会影响NDI衍生物的电导率,电子迁移率,氧化还原活性和聚集行为。评论强调了调整NFA中分子和电子特性的重要性,重点是PDI及其衍生物的核心结构。在各种位置(包括海湾和酰亚胺位点)的不同取代基会影响溶解度,聚集趋势,能级,电荷转移和分子堆积。基于DPP的NFA的光伏特性突出显示,达到了高达13%的功率转换效率。提供了详细说明各种DPP衍生物的表,展示了它们独特的吸收特性,PCE和电子迁移率。Hammett的研究被提及证明了电子撤回组对光伏效率的有利影响。本文还讨论了优化固态超分子相互作用中电荷转运和分子形状的重要性。BT与NFA的融合在减少带隙和增强分子内电荷转移方面的潜力进行了检查,从而改善了光伏性能。对这些衍生物的有条理研究被提倡以推进分子体系结构。
感光聚酰亚胺 (PSPI) 作为微电子工业中的绝缘材料引起了广泛关注,并且可以直接进行图案化以简化加工步骤。本文回顾了最近关于 PSPI 的开发工作。在简要介绍之后,描述了典型的 PSPI 配方并与传统方法进行了比较,然后介绍了图案化的主要策略。然后将最近关于 PSPI 的许多报告分为两个主要术语:正性工作和负性工作,并重点介绍了它们的化学性质直至图案形成。除了本综述中提到的 PSPI 的光敏性之外,还讨论了其他重要主题,例如低温酰亚胺化和低介电常数。关键词:感光聚酰亚胺 / 聚酰胺酸 / 感光化合物 / 重氮萘醌 / 光化学放大 / 光酸发生器 / 光碱发生器 / 低温酰亚胺化 /