摘要最多 350 个字:(请输入)交互式推荐旨在适应和学习项目和用户之间的动态交互,以实现推荐系统的响应性和准确性。强化学习天生有利于应对动态/交互环境,因此在交互式推荐研究中引起了越来越多的关注。然而,大多数现有工作倾向于学习固定的用户兴趣,而忽略了它们本质上是动态的。论文首先介绍推荐系统及其应用。然后是详细的文献综述,涵盖三个主要相关领域:序列感知推荐、交互式推荐和知识感知推荐系统。论文还回顾了基于强化学习的推荐系统应用,并讨论了其优点和缺点。之后,本论文报告了关于交互式推荐系统的一般问题陈述和要解决的挑战,包括用户动态兴趣建模、强化学习优化的计算成本以及基于强化学习的推荐系统的性能下降。特别是,我们提出了一套通过强化学习改进交互式推荐的技术和模型。我们提出了一种学习分布式交互嵌入的新模型,该模型可以以紧凑而富有表现力的方式捕获用户的动态兴趣。受到图卷积网络和知识感知推荐的最新进展的启发,我们设计了一个知识引导的深度强化学习 (KGRL) 模型,以利用强化学习和知识图谱的优势进行交互式推荐。该模型在演员-评论家网络框架内实现。它维护一个本地知识网络来指导训练阶段的决策过程,并采用注意力机制来发现项目之间的长期语义。为了降低强化学习的计算成本,我们进一步设计了一种增强优化策略,缩小了更新步骤的空间并改变了奖励函数。我们在模拟在线环境中对提出的三种方法进行了全面的实验,结果表明,与文献中的基线和最先进方法相比,我们的模型的性能得到了持续的改进。最后,本论文讨论了交互式推荐系统的未来工作和潜在的进一步改进。
通过电子邮件或当面交流的一些话对我的帮助比对话者想象的要大。我正在考虑阅读 Colin Klein、Edward Lee、Liesbeth De Mol、Marc Pouzet 和 Nick Wiggershaus 的建议和意见。由于这篇论文的动机主要来自分析哲学家和计算机科学家提出的问题,我非常感谢我在 Jean Nicod 学院的巴黎高等师范学院接受的培训,以及我有机会在罗格斯大学进行为期一年的访问。我特别要感谢 Liz Camp、Carolina Flores、Michael Murez 和 François Recanati。我还要感谢 Benjamin Icard、Pierre Trefouret、Frédéric Fogacci 和 Wendy Carrara 的想法和建议,帮助我思考论文发表后的下一个冒险。
摘要:为了提高效率,人机和人机交互必须以多模态的理念进行设计。为了允许在多种不同的设备(计算机、智能手机、平板电脑等)上使用多种交互模式,例如使用语音、触摸、注视跟踪,并集成可能的连接对象,必须在系统的不同部分之间建立有效且安全的通信方式。当使用协作机器人 (cobot) 共享同一空间并在执行任务期间非常靠近人类时,这一点就更为重要。本研究介绍了使用 MQTT 协议的协作机器人在虚拟(Webots)和现实世界(ESP 微控制器、Arduino、IOT2040)中的多模态交互领域的研究工作。我们展示了如何高效地使用 MQTT,为系统的多个实体提供通用的发布/订阅机制,以便与连接的对象(如 LED 和传送带)、机械臂(如 Ned Niryo)或移动机器人进行交互。我们将 MQTT 的使用与之前几项研究工作中使用的 Firebase 实时数据库的使用进行了比较。我们展示了协作机器人和人类如何共同完成“挑选-等待-选择-放置”任务,以及这在通信和人体工程学规则方面意味着什么,包括健康或工业问题(残疾人和远程操作)。
引言 - 在发现[1,2]一个多世纪后,超导性仍然是凝聚态物理学中最深入研究的主题之一,与物质的最基本描述具有深厚的联系[3-6]。这种宏观量子现象的特征在于零电阻,而希格斯则缩合光子大量[3,5,7]以下[3,5,7]低于某些临界温度t c。由具有较小相关效应的良好金属产生的超导体(常规的低t c超导通孔)。在BCS理论中,由于电子之间有效的吸引力,这一现象源于费米表面(FS)的不稳定性。最初,声子的交换介导了该效果。在密切相关的费米子系统(例如繁重的费米子[9,10]和高t c超导性[11-15]中,发现非常规超导性具有淋巴结间隙[11-15],强调了其他玻色子也可能负责配对。在非常规的超导体[16]中,配对机制通常涉及复杂的相互作用,例如自旋波动,电子相关性或轨道效应,导致非平凡的对称性和动量依赖性超导差距。在高t c铜矿中,通过相位敏感的测量结果建立了FS上差距中的节点[17],以确保间隙是具有D x 2-2-y 2波对称性的旋转单元。此外,已经预测并观察到了巡回铁磁体中的p波,可能是p波,旋转三芯对配对[18-22]。最后,已广泛考虑了磁化绝缘体异质结构和各种无间隙的效率系统的镁介导的非常规的超导性[23 - 37]。
[1] Abdullah X. Ali、Meredith Ringel Morris 和 Jacob O. Wobbrock。2019 年。Crowdlicit:一种用于开展分布式最终用户诱导和识别研究的系统。2019 年 CHI 计算机系统人为因素会议论文集。ACM,美国纽约州纽约,1-12。https://doi.org/10.1145/3290605.3300485 [2] Khalil J. Anderson、Theodore Dubiel、Kenji Tanaka、Marcelo Worsley、Cody Poultney 和 Steve Brenneman。2019 年。化学舱:一种用于课堂的多模式实时回顾工具。2019 年国际多模式交互会议(ICMI '19)论文集。 ACM,纽约,纽约州,美国,506–507。https://doi.org/10.1145/3340555.3358662 [3] Muhammad Zeeshan Baig 和 Manolya Kavakli。2020 年。多模态系统:分类、方法和挑战。arXiv:2006.03813 [cs.HC]
1。Afgan E,Baker D,Batut B,Van Den Beek M,Bouvier D,čechM等。 可访问,可重现和协作生物医学分析的银河平台:2018年更新。 核酸res。 2018; 46:W537–44。Afgan E,Baker D,Batut B,Van Den Beek M,Bouvier D,čechM等。可访问,可重现和协作生物医学分析的银河平台:2018年更新。核酸res。2018; 46:W537–44。2018; 46:W537–44。
大规模机器学习的最新进展已产生了能够适应一系列下游任务的高容量的“基础模型”。这种模型对机器人技术抱有很大的希望,但普遍的范式仍然将机器人描绘成单个自主决策者,并执行诸如操纵和导航之类的任务,并且人类参与度有限。然而,包括可穿戴机器人技术(例如,假肢,矫形器,外骨骼),近视和神经界面在内的大量实际机器人系统是半自治的,需要与人类合作伙伴进行持续的互动协调。在该立场论文中,我们认为机器人基础模型必须演变为交互式的多机构观点,以处理实时人类机器人共同适应的复杂性。We propose a generaliz- able, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that呼应了基于Hebbian和基于增强的可塑性的概念。尽管通过机器人系统的镜头进行了说明,但可穿戴设备和人类生理学的镜头与众不同,但所提出的框架广泛适用于在半自治或交互式环境中运行的机器人。通过超越单一代理设计,我们的立场强调了机器人技术中的基础模型如何实现更强大,个性化和预期的性能水平。
mlnova是按照结构化的,以用户为中心的设计方法开发的,从用户研究开始,以查明Kaggle和Udemy等现有平台中的差距。平台开发中的关键标准包括可访问性,实时反馈和易用性,这导致选择了Django以进行后端稳定性和React.js。该平台使用MongoDB和Firebase进行有效的数据处理,从而确保学习者操纵数据集的交互式模块中的实时更新。使用Scikit-Learn实施了机器学习模型,以实现简单性,而Plotly和D3.js促进了高质量的数据可视化。这种技术组合为用户提供了引人入胜的互动体验。
与大多数作物不同,由于葡萄的杂合性,传统育种对葡萄的益处甚微。令人惊讶的是,我们今天看到的主要栽培葡萄品种与几个世纪前一样;它们缺乏适应不断变化的环境的特性。然而,气候变化和对环境的担忧要求葡萄栽培进行重大变革,需要过渡到基于知识的概念和先进的基因组学工具。我们在此报告了两种葡萄品种的单倍型解析基因组组装的生成以及 VitExpress 的建立,VitExpress 是一个开放的交互式转录组学平台,提供基因组浏览器和集成的网络工具,用于表达分析和基因相关性研究。这些社区资源和工具预计将促进葡萄研究的几个领域的进步。
摘要 — 触觉反馈在广泛的人机/计算机交互应用中至关重要。然而,触觉设备的高成本和低便携性/可穿戴性仍然是尚未解决的问题,严重限制了这种原本很有前途的技术的采用。电触觉界面具有更便携和更可穿戴的优势,因为它们的执行器尺寸减小,功耗和制造成本更低。电触觉反馈在人机交互和人机交互中的应用已被探索,以促进假肢、虚拟现实、机器人遥控操作、表面触觉、便携式设备和康复等应用中的基于手的交互。本文介绍了电触觉反馈的技术概述,以及其在基于手的交互中的应用的系统综述和荟萃分析。我们根据应用类型讨论了不同的电触觉系统。我们还对研究结果进行了定量讨论,以提供对最新技术的高层次概述并提出未来的方向。电触觉反馈系统显示出更高的便携性/可穿戴性,并且它们成功地呈现和/或增强了大多数触觉、引发感知过程并在许多场景中提高了性能。然而,我们发现了知识差距(例如,实施方案)、技术(例如,反复校准、电极的耐用性)和方法(例如,样本大小)缺陷,这些缺陷应在未来的研究中得到解决。