摘要。设置机器人增材制造机器需要注意几个安全方面,包括不同系统的集成、功能工作区、人机界面和操作的便利性。本文介绍了在设计和组装机器人增材制造单元时应考虑的一些主题。它基于在 SINTEF Manufacturing 的增材制造实验室中设计和组装混合 DED 和研磨单元的经验。该单元旨在确保机器人和增材制造构建单元的安全稳定运行,为实现这一点,它采用钢框架结构,覆盖钢板,并配备通风系统、防激光窗和卷帘门。设计并集成了一个安全系统,以确保单元中运行的不同元件之间的通信和安全机制的协调。
无论我们是在谈论为舰队开发和引入一些新技术能力,还是在谈论管理我们的资源以保持敏捷并响应当前和预期的需求,大写的“I”创新几乎是我们企业各个方面的驱动力。2019 年底,MEPM 成立了一个新的海军装备技术管理部门,以协调未来技术机会和实践的引入、采用和验证。该团队正在寻找通过新兴技术和人机系统集成管理来支持现有舰队的创新方法,并且是处理“物联网”的所有技术权威:增强现实、云计算、人机界面和增材制造(3D 打印)。该团队正在与 RCN 利益相关者密切合作,以确保我们实现 RCN 的数字海军计划,随着我们企业的不断发展,我们可以期待听到更多来自他们的消息。
MUAC 的下一代 ATC 系统 - 与运输业的许多领域一样,自动化在空中交通管理 (ATM) 中越来越受到关注。预期的效率、生产力和安全效益,以及减轻人类操作员压力的前景,是当前研究和努力在 ATM 中引入更多自动化的主要驱动因素。欧洲空中航行安全组织的马斯特里赫特上区管制中心 (MUAC) 在空中交通处理中自动化越来越多的任务方面有着悠久的历史。例子包括早期采用的无条带操作、短期冲突警报 (STCA)、管制员-飞行员数据链通信 (CPDLC)、自动相关监视 - 合同 (ADS-C)、先进且直观的人机界面 (HMI) 工具、自动人力规划工具等。
无论我们是在谈论为舰队开发和引入一些新技术能力,还是在谈论管理我们的资源以保持敏捷并响应当前和预期的需求,大写的“I”创新几乎是我们企业各个方面的驱动力。2019 年底,MEPM 成立了一个新的海军装备技术管理部门,以协调未来技术机会和实践的引入、采用和验证。该团队正在寻找通过新兴技术和人机系统集成管理来支持现有舰队的创新方法,并且是处理“物联网”的所有技术权威:增强现实、云计算、人机界面和增材制造(3D 打印)。该团队正在与 RCN 利益相关者密切合作,以确保我们实现 RCN 的数字海军计划,随着我们企业的不断发展,我们可以期待听到更多来自他们的消息。
MUAC 的下一代 ATC 系统 - 与运输业的许多领域一样,自动化在空中交通管理 (ATM) 中越来越受到关注。预期的效率、生产力和安全效益,以及减轻人类操作员压力的前景,是当前研究和努力在 ATM 中引入更多自动化的主要驱动因素。欧洲空中航行安全组织的马斯特里赫特上区管制中心 (MUAC) 在空中交通处理中自动化越来越多的任务方面有着悠久的历史。例子包括早期采用的无条带操作、短期冲突警报 (STCA)、管制员-飞行员数据链通信 (CPDLC)、自动相关监视 - 合同 (ADS-C)、先进且直观的人机界面 (HMI) 工具、自动人力规划工具等。
这次会议取得了巨大的成功,吸引了约 90 人来到加州和远程参加。它为教育工作者、研究人员和从业者提供了一个激动人心的论坛,让他们学习、分享知识、报告最新的创新和发展,并交流远程呈现系统和应用、远程机器人、人机界面和自主性等各个方面的想法和进展。远程呈现 2024 会议以 38 篇同行评审的常规和短文(发表在 IEEE Xplore 上)和 4 篇摘要为特色,这些摘要已在会议论文集中发表。所有 42 项技术贡献均在会议上以口头形式呈现,分为六场现场会议、两场远程会议和一场混合最新摘要会议,围绕以下主题组织:• 第 1 场 - 远程操作系统和
MUAC 的下一代 ATC 系统 - 与运输业的许多领域一样,自动化在空中交通管理 (ATM) 中越来越受到关注。预期的效率、生产力和安全效益,以及减轻人类操作员压力的前景,是当前研究和努力在 ATM 中引入更多自动化的主要驱动因素。欧洲空中航行安全组织的马斯特里赫特上区管制中心 (MUAC) 在空中交通处理中自动化越来越多的任务方面有着悠久的历史。例子包括早期采用的无条带操作、短期冲突警报 (STCA)、管制员-飞行员数据链通信 (CPDLC)、自动相关监视 - 合同 (ADS-C)、先进且直观的人机界面 (HMI) 工具、自动人力规划工具等。
摘要:无人机有望自主运行,但它们也会与人类互动以共同解决任务。为了支持民用人机协作团队,我们提出了一种分布式架构,其中图像识别、与人类协调以及飞行控制决策等复杂操作不是在无人机上进行,而是远程进行。这种架构的好处是可用于图像识别的计算能力增强,并有可能集成人机界面。缺点是,需要进行通信,导致命令接收延迟。在本文中,我们讨论了分布式方法的设计考虑因素、智能手机上的示例实现以及书架库存的具体用例。此外,我们报告了通过 Wi-Fi 连接的定制无人机通过实验得出的关于消息传递和命令响应延迟的初步见解。
• Trane 3-D 涡旋压缩机 • 高级电机保护 • 300 psi 水侧蒸发器 • 蒸发器绝缘(¾ 英寸 Armaflex II 或同等产品) • 蒸发器加热带(恒温器控制) • 冷凝器盘管防护罩 • 低至 30°F 的运行无需额外的挡风板或压力控制 • 流量损失保护 • 可提供 UL 和 CSA 认证 • 有包装库存 • 控制电源变压器 • 低环境锁定 • 简明英语(西班牙语/法语)人机界面显示 • 智能超前/滞后操作 • 集成冷冻溶液泵控制 • 可选过程或舒适度控制算法 • 外部自动/停止 • 集成到 UCM 中的电子低环境阻尼器控制 • 流量开关 • 过滤器/连接套件
摘要。本文作者针对在爆震过程中可能出现的问题:当事故发生时不发生爆炸,当没有爆炸点或没有安全气囊时,安全气囊静态展开所需要的电源参数,设计了针对安全气囊展开时间、电流大小等参数可调的嵌入式电源系统。实验平台通过触摸式人机界面设定电流值、电压值、脉冲延迟时间、脉冲保持时间,模拟汽车交通事故中安全气囊发出的引爆信号,实现安全气囊静态引爆,并触发闪光灯和高速摄像机记录安全气囊的引爆过程。通过实际安全气囊展开试验,该系统达到了实验目的,为安全气囊的实验和考核提供了智能化、通用化的解决方案。