(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 3 月 5 日发布。;https://doi.org/10.1101/2024.03.05.583596 doi:bioRxiv preprint
© 2022 作者,经 Springer Nature Limited 独家授权。保留所有权利。本文的此版本已在同行评审后被接受发表,并受 Springer Nature 的 AM 使用条款约束,但不是记录版本,不反映接受后的改进或任何更正。记录版本可在线获取:http://dx.doi.org/10.1038/s41928-022-00803-0。
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
从单细胞活动中重建神经元网络连接对于理解大脑功能至关重要,但从大量静默神经元中破译连接这一难题在很大程度上尚未解决。我们展示了一种使用刺激结合监督学习算法来获取模拟静默神经元网络连接的协议,该协议能够高精度地推断连接权重,并高精度地预测单脉冲和单细胞水平的脉冲序列。我们将我们的方法应用于大鼠皮层记录,这些记录通过异质连接的漏积分和放电神经元电路馈送,这些神经元以典型的对数正态分布发声,并证明在刺激多个亚群期间性能有所提高。这些关于所需刺激数量和协议的可测试预测有望增强未来获取神经元连接的努力,并推动新的实验以更好地理解大脑功能。
使用含有 pCAMBIA 1301 载体的农杆菌菌株 AglI 感染新鲜芦荟外植体,以验证 GUS 基因的瞬时表达。与农杆菌共培养后,在进行外植体 GUS 组织化学染色的外植体上观察到几个明显的蓝点(图 5)。该载体在 GUS 基因中有一个内含子,确保其仅在转化组织中活跃表达,消除了假阳性的可能性。通过 GUS 组织化学染色评估了不同芦荟外植体在不同物理参数下的再生潜力和转化效率。在组 I 和组 II 中分别发现瞬时表达率为 91.3% 和 28.6%。芦荟茎(芽基部)表现出最大的再生潜力
摘要:含有金属介导的DNA(MMDNA)碱基对的DNA双螺旋已经由嘧啶:嘧啶对之间的Ag +和Hg 2+离子构建,并具有纳米电子学的承诺。MMDNA纳米材料的合理设计是不切实际的,没有完整的词汇和结构描述。在这里,我们探讨了结构性DNA纳米技术的可编程性,以使其成立的使命是为生物分子结构确定的衍射平台进行自组装。我们采用了张力三角形来通过X射线衍射和MMDNA构建的概括性设计规则来构建MMDNA对的全面结构库。我们发现了两种结合模式:N3-主导,中心对称对和由5位环修饰驱动的主要凹槽粘合剂。能量间隙计算显示,MMDNA结构的最低未居住的分子轨道(LUMO)中显示了额外的水平,使它们具有吸引力的分子电子候选物。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月24日发布。 https://doi.org/10.1101/2023.05.17.541233 doi:Biorxiv Preprint
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。