细胞可塑性导致肿瘤内异质性和表型转换,从而能够适应转移性微环境并对疗法产生耐药性。肿瘤细胞可塑性的潜在机制仍不清楚。SOX10 是一种神经嵴谱系转录因子,在黑色素瘤中异质表达。SOX10 的缺失会降低增殖,导致侵袭性,包括间充质基因和细胞外基质的表达,并促进对 BRAF 和/或 MEK 抑制剂的耐受性。我们发现细胞凋亡蛋白 1/2 (cIAP1/2) 抑制剂类可在 SOX10 缺陷细胞中选择性诱导细胞死亡。靶向治疗选择 SOX10 敲除细胞,强调其药物耐受性。将 cIAP1/2 抑制剂与 BRAF/MEK 抑制剂联合使用可延缓黑色素瘤在体内获得性耐药性的发生。这些数据表明,SOX10 介导皮肤黑色素瘤的表型转换,从而产生靶向抑制剂耐受状态,这可能是获得耐药性的前奏。此外,我们提供了一种选择性消除 SOX10 缺陷细胞的治疗策略。
摘要:由于人类和经济负担很高,糖尿病是所有国家的主要公共卫生问题。重大代谢改变与慢性高血糖症有关,该慢性高血糖症是糖尿病的特征并导致毁灭性并发症,包括视网膜病,肾衰竭,冠状动脉疾病和心血管死亡率升高。最常见的形式是2型糖尿病(T2D),占90%至95%的情况。这些慢性代谢疾病是遗传因素贡献的异质性,但是产前和产后生活环境因素也是如此,包括久坐的生活方式,超重和肥胖。但是,仅这些经典的风险因素无法解释特定地区T2D患病率的快速发展和1型糖尿病的高患病率。在环境因素中,实际上我们接触了越来越多的化学分子或通过我们的生活方式产生的化学分子。在这篇叙述性综述中,我们旨在对这些污染物的作用进行批判性概述,这些污染物可以干扰我们的内分泌系统,即所谓的内分泌中断化学物质(EDC),在糖尿病和代谢性疾病的病理生理中。
尽管进行了局部和全身治疗,实体癌仍经常复发并出现远处转移。细胞休眠已被确定为导致晚期复发的耐药性的重要机制。因此,看似无病的患者出现不可见的、微小残留癌症复发需要适合药物发现的体外休眠细胞模型。在这里,我们探索了休眠诱导的 3D 工程基质,这些基质产生机械限制并诱导癌细胞生长停滞和化疗存活。我们通过 P-ERK 低:P-p38 高休眠信号比以及 Ki67 − 表达来表征单细胞的休眠表型。作为潜在机制,我们确定了四个半 LIM 结构域 2 (FHL2) 蛋白的硬度依赖性核定位,导致 p53 独立的高 p21 Cip1/Waf1 核表达,这在小鼠和人类组织中得到了验证。休眠诱导基质中的细胞在 FHL2 下调后对化疗变得敏感,这暗示了其具有抗药性作用。因此,我们基于生物材料的方法将能够系统地筛选出以前未发现的适合根除可能复发的休眠癌细胞的化合物。
癌症是全球范围内导致疾病相关死亡的主要原因。耐药性是抗癌治疗失败的主要原因之一。抗癌药物耐药性有许多潜在机制,包括遗传/表观遗传修饰、微环境因素和肿瘤异质性。在目前的情况下,研究人员专注于这些新机制和应对策略。最近,研究人员已经认识到癌症由于抗癌药物耐药性、肿瘤复发和进展而进入休眠状态的能力。目前,癌症休眠分为“肿瘤块休眠”和“细胞休眠”。肿瘤块休眠代表在血液供应和免疫反应的控制下细胞增殖与细胞死亡之间的平衡。细胞休眠表示细胞处于静止状态,其特征是自噬、应激耐受信号、微环境线索和表观遗传修饰。癌症休眠被认为是癌症患者原发性或远端复发性肿瘤形成和临床预后不良的根源。尽管缺乏可靠的细胞休眠模型,但许多研究已经阐明了细胞休眠调控的机制。更好地了解癌症休眠的生物学对于开发有效的抗癌治疗策略至关重要。在这篇综述中,我们总结了细胞休眠的特征和调控机制,介绍了几种针对细胞休眠的潜在策略,并讨论了未来的前景。
十年前,小分子靶向疗法的出现彻底改变了转移性黑色素瘤的治疗,前提是肿瘤携带对这些治疗有反应的突变。然而,尽管大多数患者都表现出显著的初始反应,但即使在最初反应惊人之后,大多数患者还是会出现复发。这些复发是由于“休眠”的持续性细胞对治疗没有反应。日内瓦大学 (UNIGE) 和日内瓦大学医院 (HUG) 的研究小组表明,这些细胞缺乏一种名为 HuR 的蛋白质表达。通过揭示这种表达不足的机制并使用酶抑制剂对其进行靶向治疗,该团队成功降低了所有黑色素瘤细胞的治疗耐药性。这些结果发表在《生化与生物物理研究通讯》上,为治疗转移性黑色素瘤和其他类型实体癌开辟了新的途径。
摘要 - 后门对机器学习构成了严重威胁,因为它们会损害安全系统的完整性,例如自动驾驶汽车。虽然已经提出了不同的防御来解决这一威胁,但他们都依靠这样的假设:硬件加速器执行学习模型是信任的。本文挑战了这一假设,并研究了完全存在于这样的加速器中的后门攻击。在硬件之外,学习模型和软件都没有被操纵,以使当前的防御能力失败。作为硬件加速器上的内存有限,我们使用的最小后门仅通过几个模型参数偏离原始模型。为了安装后门,我们开发了一个硬件特洛伊木马,该木马会处于休眠状态,直到在现场部署后对其进行编程。可以使用最小的后门来配置特洛伊木马,并仅在处理目标模型时执行参数替换。我们通过将硬件特洛伊木马植入商用机器学习加速器中,并用最小的后门来证明攻击的可行性,以使其对交通符号识别系统进行编程。后门仅影响30个模型参数(0.069%),后门触发器覆盖了输入图像的6.25%,但是一旦输入包含后门触发器,它就可以可靠地操纵识别。我们的攻击仅将加速器的电路大小扩大了0.24%,并且不会增加运行时,几乎不可能进行检测。鉴于分布式硬件制造过程,我们的工作指出了机器学习中的新威胁,该威胁目前避免了安全机制。索引术语 - 硬件木马,机器学习后门。
摘要。逃避治疗以及随后的疾病进展 - 是当前肿瘤学的主要挑战。在这种情况下的重要作用似乎是由各种形式的癌细胞杂草扮演的。例如,在短时间内,治疗引起的休眠可能会给积极的治疗方法(例如化学疗法和长期休眠)造成严重的障碍,即使在最初成功治疗后很多年,也可能导致复发和转移。潜在的休眠相关机制是复杂且高度多样的,因此,对休眠状态的基本模式的分析甚至需要抽象和理想化,以及相关特定方案的识别。在本文中,我们关注的是,单个癌细胞可以自发地和治疗的响应以及相对短的时间跨度均可转移和从休眠状态转移。我们基于基于随机剂的相互作用的数学“玩具模型”,用于涉及单个短期休眠的癌细胞种群的动力学,并允许一系列(多药)治疗方案。我们的分析表明,在我们理想化的模型中,即使是一小少数的休眠细胞群体也可能导致经典(以及在没有休眠成功)的单药治疗下的治疗失败。我们进一步研究了多种多种药物方案(以特定方式操纵休眠癌细胞)的有效性,并根据人群中存在的休眠机制的类型和参数为设计(多)药物治疗方案的设计提供了一些基本规则。
3 系统模块 ................................................................................................................................................ 6 3.1 CPU .......................................................................................................................................... 6 3.2 内存 .......................................................................................................................................... 6 3.2.1 ROM ............................................................................................................................................. 8 3.2.2 SRAM ............................................................................................................................................. 8 3.2.3 FLASH ............................................................................................................................................. 8 3.2.4 eFuse ............................................................................................................................................. 8 3.2.5 内存地址映射 ............................................................................................................................. 9 3.3 引导和执行模式 ............................................................................................................................. 9 3.3.1 引导加载程序 ............................................................................................................................. 9 3.4 电源、时钟和复位 (PCR) ............................................................................................................. 10 3.5 电源管理 (POWER) ................................................................................................................ 10 3.6 低功耗特性.................................................................................................................... 12 3.6.1 工作和休眠状态 .......................................................................................................................... 12 3.6.1.1 正常状态 .......................................................................................................................... 12 3.6.1.2 时钟门控状态 ...................................................................................................................... 12 3.6.1.3 系统休眠状态 ...................................................................................................................... 12 3.6.1.4 系统关闭状态 ...................................................................................................................... 12 3.6.1.5 UVLO .................................................................................................................................... 12 3.6.2 状态转换 ................................................................................................................................ 13 3.6.2.1 进入时钟门控状态和唤醒 ...................................................................................................... 13 3.6.2.2 进入睡眠/关闭状态和唤醒 .............................................................................................. 13 3.7 中断................................................................................................................................... 13 3.8 时钟管理................................................................................................................................... 14 3.9 IOMUX...................................................................................................................................... 15 3.10 GPIO...................................................................................................................................... 17 3.10.1 DC 特性............................................................................................................................. 17