摘要:低噪声放大器(LNA)在射频接收机前端中起着重要作用,其主要作用是放大来自地面噪声的微弱接收信号,并提高接收机的灵敏度。对于工作在高于S波段频率的LNA,迄今为止,大多数设计都使用具有高成本基板材料的印刷电路板(PCB),从而增加了整个接收单元的总价格。本文介绍了一种新方法,即使用FR-4材料(PCB制造中常见的低成本基板)设计LNA。与使用高成本材料基板设计的LNA相比,所提出的LNA将保持所有重要参数(例如增益,噪声系数)的质量。使用阶梯式阻抗匹配技术来达到电路尺寸和效率之间的平衡。所提出的LNA的频率范围位于X波段,该范围适合军用雷达应用。此外,还可以将所需的 LNA 应用于低地球轨道 (LEO) 地球观测卫星系统的地面站接收器前端。关键词:低噪声放大器、LNA、FR-4、雷达、X 波段、接收器前端。*
微波光子学 (MWP) 近年来采用了许多重要概念和技术,包括光子集成、多功能可编程性以及增强关键射频性能指标(如噪声系数和动态范围)的技术。然而,到目前为止,这些方面尚未在单个电路中同时实现。在这里,我们首次展示了一种多功能集成微波光子电路,它实现了片上可编程滤波功能,同时实现了以前无法达到的 > 120 dB.Hz 动态范围和 15 dB 噪声系数的创纪录高位。我们使用全集成调制变压器和双注入环谐振器作为多功能光学滤波组件实现的多功能复杂频谱定制来实现这一独特功能。这项工作打破了集成、功能和性能的传统和分散方法,目前这种方法阻碍了集成 MWP 系统在实际应用中的采用。
当频率与温度的要求过于严格而无法通过基本 XO(晶体振荡器)或 TCXO(温度补偿晶体振荡器)满足时,可使用 OCXO(恒温晶体振荡器)。使用 OCXO,当振荡器外部温度发生变化时,晶体和关键电路的温度会保持恒定。使用恒温器控制振荡器内部的温度可保持此恒定温度。在 OCXO 中,环境温度的变化会被感应到,然后反馈到恒温器控制器,该控制器会持续保持振荡器外壳内部的最佳温度。OCXO 可以将晶体的固有稳定性提高 5000 倍以上。恒温器控制系统并不完善,开环增益不是无限的,恒温器(振荡器)内部存在内部温度梯度,并且在传统恒温器中,恒温器外壳外部的电路会受到环境温度变化的影响,从而“拉动”频率。
过去几十年来,神经科学家一直与集成电路社区合作,帮助他们开发用于分析和理解大脑的新工具。在此背景下,必须对小动物进行基础性的体内研究,而这需要小型化仪器进行长期研究[1]。多年来,科学家们一直推测脑电图 (EEG) 活动可能提供大脑和计算机之间的通信通道[2]。随着该领域的发展,电子界对功能性和小型化的需求也在上升。由于需要处理低幅度生物信号,因此设计放大器使这些信号与 ADC 等设备兼容以便在计算机上进一步分析非常重要。放大器必须具有特定要求,例如对生理信号进行选择性放大、抑制叠加的噪声和干扰信号、以及确保免受高电压和电流造成的损坏 [3]。微电子技术的最新发展带来了许多新应用,包括通过可穿戴和可植入设备采集生物信号[4-8]。例如,心电图 (ECG) 是最著名的应用之一,它包括采集生物信号以帮助医生诊断心脏疾病[6-10]。脑电图 (EEG) 是另一个广泛的应用,每年都有大量新著作发表[11-13]。神经记录将生物信号采集推向了新的水平,出现了涉及神经调节的新应用[14-16]。光遗传学就是这类应用,它是一个新兴的应用领域,从大脑的特定部分采集信号,同时,大脑的同一区域也可以受到光的刺激[17-20]。
Excelitas Technologies 的 C30902EH 系列雪崩光电二极管采用双扩散“穿透”结构制造而成。这种结构在 400 nm 和 1000 nm 之间具有高响应度,并且在所有波长下都具有极快的上升和下降时间。该设备的响应度与高达约 800 MHz 的调制频率无关。探测器芯片密封在改进的 TO-18 封装中的平板玻璃窗后面。光敏表面的有用直径为 0.5 毫米。C30921EH 采用光导管 TO-18 封装,可将光从聚焦点或直径达 0.25 毫米的光纤高效耦合到探测器。密封的 TO-18 封装允许将光纤连接到光导管末端,以最大限度地减少信号损失,而不必担心危及探测器的稳定性。 C30902EH-2 采用密封 TO-18 封装,内嵌 905nm 通带滤波器,C30902BH 采用密封球透镜,构成了 C30902EH 系列。C30902 APD 系列还具有单光子 APD (SPAD),可在盖革模式和线性模式下以更高的增益运行。有关更多信息,请参阅我们的 C30902SH 数据表。
许多新兴的生物传感应用 [1]、[2] 以及增强现实应用的人机界面 [3] 都依赖于巨磁电阻 (GMR) 传感器,因为它们具有良好的灵敏度和低 1/f 噪声。作为替代方案,隧道磁电阻 (TMR) 传感器由于其更高的磁阻 (MR) 比可以提供比 GMR 传感器更好的灵敏度。然而,如此高的 MR 比对接口电子设备提出了严格的要求,因为它们的基极电阻变化很大。这种变化会导致放大器输入端出现较大的电压偏移,从而减小放大器的动态范围,在最坏的情况下,如果不进行补偿,会导致前端饱和。消除放大器输入直流偏移的一个可能解决方案是使用斩波电容耦合仪表放大器 (CCIA) 与直流伺服环路 (DSL) [4],参见图 1a。然而,这种方法需要在放大器的输入参考电压噪声和 DSL 可以补偿的最大偏移之间进行权衡。更具体地说,可以通过增加 C DSL 来补偿更高的输入偏移,而这又会增加 CCIA 的输入参考电压噪声 [5]。作为一种替代方案,图 1b 显示了使用跨阻放大器 (TIA) 处理产生的电流 [2] 的可能性。在这种方案中,通常需要辅助电阻
摘要 - 我们介绍了新的INGAAS/INP单光雪崩二极管(SPAD)的设计和实验性 - 具有两个不同直径的二极管:i)10 µm设备,适用于基于光学的量子量子应用; ii)一个25 µm的一个,更适合自由空间应用。与上一代相比,我们改进了双锌扩散的设计并优化了层结构。我们在225 K和5 V多余的偏置下分别达到了低黑暗计数率,分别为10 µm和25 µM设备,在10 µM检测器时,分别在175 K时下降到每秒几十秒。在5 V多余的偏置和225 K温度下,这两个设备还显示出较高的光子检测效率(1064 nm时为33%,在1310 nm处为31%,在10 µM Spad中为1550 nm时25%)。通过自定义读数集成电路测量了后泵,实现了非常低的概率值。时机抖动与上一代设备相媲美。
本研究报告了一种面积高效、无电感、低噪声 CMOS 跨阻放大器的设计,适用于入门级光时域反射仪。本研究提出了一种新方法,用于在电容反馈 TIA 中实现可编程增益,使用输入级偏置阻抗和其中一个反馈电容器独立调整低频和高频行为。该方法解决了快速前馈或电阻反馈拓扑的典型噪声问题,同时缓解了关键 TIA 性能指标的权衡。提出了一种更精确的放大器模型,该模型考虑了电容隔离和两个偏置电路的影响。建议对参考设计进行进一步修改,包括基于 PMOS 的偏置电路实现,以解决电压余量问题。该电路采用标准 180 nm CMOS 工艺实现,采用 1.8 V 电源供电,电流为 11.7 mA。
摘要 - 报告了基于标准40 nm CMOS技术的量子应用的低温宽带低噪声放大器(LNA)。LNA规范是从4.2 K处的半导体量子位的读数中得出的,其量子信息信号的特征是相位调节的信号。为了实现宽带输入匹配阻抗和低噪声图,可以利用输入晶体管的闸门电容。目标是将电阻和电容载荷与源电感变性的共同源阶段的输入阻抗匹配。电容载荷是由LC平行箱产生的,其谐振频率低于工作频率。实现的非构体等效电容已被证明是对输入阻抗匹配的好处。载荷的电阻部分是由cascode阶段的跨传导提供的。将电感器添加到cascode晶体管的门中以抑制其噪声,而具有两个共振频率的基于变压器的谐振器则用作第一个阶段的负载,从而扩展了操作带宽。提出并分析了LNA的低温温度操作的设计注意事项。LNA在整个频段(4.1-7.9 GHz)中实现了35±0.5 dB的测得的增益(S 21),回报损失> 12 dB,NF为0.75–1.3 dB(4.1-7.9 GHz),在室温下具有51.1兆瓦的功耗,同时显示为42±3.3 dB和NF的幂均值,均为0.2 db,Nf of 0.23-0.23-0.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d d d db。在4.6至8 GHz之间。据我们所知,这是基于在4 GHz以上工作的批量CMOS过程的第一个报告,该过程在房间和低温温度下均显示出亚1-DB NF。
