Loading...
机构名称:
¥ 2.0

过去几十年来,神经科学家一直与集成电路社区合作,帮助他们开发用于分析和理解大脑的新工具。在此背景下,必须对小动物进行基础性的体内研究,而这需要小型化仪器进行长期研究[1]。多年来,科学家们一直推测脑电图 (EEG) 活动可能提供大脑和计算机之间的通信通道[2]。随着该领域的发展,电子界对功能性和小型化的需求也在上升。由于需要处理低幅度生物信号,因此设计放大器使这些信号与 ADC 等设备兼容以便在计算机上进一步分析非常重要。放大器必须具有特定要求,例如对生理信号进行选择性放大、抑制叠加的噪声和干扰信号、以及确保免受高电压和电流造成的损坏 [3]。微电子技术的最新发展带来了许多新应用,包括通过可穿戴和可植入设备采集生物信号[4-8]。例如,心电图 (ECG) 是最著名的应用之一,它包括采集生物信号以帮助医生诊断心脏疾病[6-10]。脑电图 (EEG) 是另一个广泛的应用,每年都有大量新著作发表[11-13]。神经记录将生物信号采集推向了新的水平,出现了涉及神经调节的新应用[14-16]。光遗传学就是这类应用,它是一个新兴的应用领域,从大脑的特定部分采集信号,同时,大脑的同一区域也可以受到光的刺激[17-20]。

用于深部脑刺激 (DBS) 的低噪声放大器

用于深部脑刺激 (DBS) 的低噪声放大器PDF文件第1页

用于深部脑刺激 (DBS) 的低噪声放大器PDF文件第2页

用于深部脑刺激 (DBS) 的低噪声放大器PDF文件第3页

用于深部脑刺激 (DBS) 的低噪声放大器PDF文件第4页

用于深部脑刺激 (DBS) 的低噪声放大器PDF文件第5页

相关文件推荐

2023 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0