自 2019 年 12 月首次出现以来,严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 一直在全球传播,尽管全球为遏制该病毒做出了诸多努力。截至 2024 年 2 月,全球每月报告约 500,000 例 2019 年冠状病毒病 (COVID-19) 病例和 10,000 例死于 COVID-19 的病例 (1)。自 2021 年底出现 Omicron 变体以来,其亚变体已广泛传播并持续存在 (2)。在公共卫生方面,接种疫苗是降低 COVID-19 发病率和死亡率最有效的措施。疫苗诱导的免疫力会因宿主和环境因素而有所不同,例如年龄、性别、合并症、先前存在的免疫状态、疫苗配方和接种间隔 (3 – 6)。针对野生型 (WT) SARS-CoV-2 和 Omicron 亚变体 (BA.4/BA.5 或 BA.1) 的二价 COVID-19 疫苗已被开发出来,以增强对 Omicron 亚变体的免疫力 (7)。2022 年 10 月,当二价 COVID-19 疫苗首次在韩国推出时,韩国的主要亚变体是 BA.5,后来逐渐被 BN.1 取代。BN.1 是 2022 年 12 月至 2023 年 3 月最流行的亚变体,此后被 XBB 亚谱系取代 (2)。研究发现,二价 COVID-19 疫苗的实际有效性因研究期而异 (8 – 10)。以色列 2022 年 9 月至 2023 年 1 月进行的一项研究发现,疫苗对住院率的有效性为 72% (8)。然而,2023 年 12 月至 4 月在英国进行的一项研究发现,疫苗对住院的有效性较低,从 29.7% 到 52.7% 不等,具体取决于传播的 SARS-CoV-2 变体的流行程度 ( 9 )。这些研究利用医疗保健数据库,有一个严重的缺点,即依赖于报告的病例。在没有严格监测 SARS-CoV-2 感染的情况下,大量 COVID-19 病例可能无法得到实验室确诊,特别是在有效抗病毒药物有限的环境中。因此,评估疫苗对 SARS-CoV-2 感染的有效性具有挑战性,这对于抑制正在进行的 COVID-19 大流行至关重要。考虑到 SARS-CoV-2 的快速进化和免疫力随时间的减弱,评估对病毒变体的长期和交叉反应免疫对于制定最佳疫苗接种策略至关重要。已知中和抗体 (NAb) 可预防 SARS-CoV-2 感染,而细胞免疫可能降低 SARS-CoV-2 感染的严重程度(11-13)。迄今为止,很少有研究分析接种二价 COVID-19 疫苗后的长期体液和细胞免疫,尤其是接种新型二价 COVID-19 疫苗后的长期体液和细胞免疫。在本研究中,我们的目的是评估接种疫苗后长达 9 个月的长期体液免疫以及双价 COVID-19 疫苗接种后对不同 Omicron 亚变体的交叉反应体液/细胞免疫。
记忆B细胞(B MEM)在特定的抗原补偿时提供了自适应体液宿主防御的第二壁,当第一个壁由源自前面抗体反应的预制抗体组成时,失败了。是这种情况,因为最近患有SARS-COV-2感染以及以前具有季节性流体的经历,而中和抗体的水平下降或逃避这种变异病毒时。在这些情况下,在两种情况下都可以重新感染,但先前存在的B MEM参与召回响应仍可以提供免疫保护。b mem在宿主防御中起着至关重要的作用,但他们的评估并未成为标准免疫监测库的一部分。在这里,我们描述了新一代的B细胞ELISPOT/Fluorospot(Clocialityimunospot®)方法,该方法适合于单细胞分辨率,Bem repertoire ex Vivo,揭示其免疫球蛋白类/子类利用率,及其对原始含有的原性和变化的Viruses和Antigiant/Antigimens。由于可以使用最小的细胞材料进行这种全面的B细胞免疫孔测试,因此可扩展且健壮,因此它们有望非常适合常规免疫监测。
脚和口径疾病(FMD)是一种高度传染性的牲畜病毒疾病,会造成严重的经济损失。FMD病毒(FMDV)属于Picornaviridae和Aphthovirus家族,分为七个血清型(1,2)。七个FMDV血清型之间的交叉保护无法使其预防和控制复杂化(3,4)。fmd通常由症状(例如高烧,口腔中的水泡以及粘性或泡沫状唾液的过度分泌)来鉴定(5)。此外,成年动物可以体重减轻,几个月内无法恢复,雄性睾丸肿胀,并显着减少牛奶的产量。尽管几只感染的动物仍然无症状载体,但它们可以携带病毒并将其传播给其他动物(6,7)。许多国家建议进行疫苗接种,以防止FMD急性扩散;但是,可用的疫苗有几个局限性,例如低抗体滴度和注射部位的局部反应。因此,我们研究了有效的佐剂,以增强疫苗的细胞和体液免疫反应并解决安全问题。韩国属于FMDV血清型池1,主要暴露于FMDV血清型O,A和亚洲1(8)。自2000年以来,韩国的FMD爆发主要归因于血清型O和A。的确,从2017年到2023年,FMD最近发生的FMD爆发是由O型(ME-SA拓扑)和A型(A/ASIA/SEA-97拓扑型)引起的。因此,在这项研究中,使用FMD抗原O PA2(ME-SA拓扑型)和YC(A/Asia/Sea-97拓扑型)制备了测试疫苗。佐剂与特定的疫苗抗原结合使用时会增强和延长免疫反应(9);因此,要开发一种新型的FMD疫苗,必须对各种佐剂进行研究。大多数FMD疫苗都涉及使用灭活的病毒抗原。矿物油基佐剂和氢氧化铝[AL(OH)3],有或没有皂苷,已用作FMD疫苗的传统佐剂,以改善灭活病毒抗原的稳定性和递送(10-13)。已经报道了含有粗皂苷的FMD疫苗,包括在疫苗接种位点进行溶血并引起短寿命抗体反应。因此,比皂苷更安全并可以诱导强烈的免疫反应的Quil-A用作FMD疫苗辅助(14)。尽管有改善的FMD疫苗,但建议重复进行疫苗接种,这是由于低和短寿命的抗体滴度。重复的疫苗接种可能会在注射部位引起局部副作用,这是由于FMD疫苗中包含的矿物油基辅助剂(11、13、15-17)。因此,当前在FMD疫苗中使用的佐剂,特定的免疫刺激性组合需要改进以增强效率和安全性。在先前的研究中,我们确认用树突状细胞(DC)相关的C型凝集素-2(Dectin-2)激动剂诱导的PBMC增殖(18)处理猪外周血单核细胞(PBMC)(DC)相关的C型凝集素-2(DC)相关的C-Type凝集素2(DC)。因此,我们假设Dectin-2激活引起了猪中强大的免疫反应。基于先前的研究,我们使用了Dectin-2激动剂D-Galacto-D-Mannan作为本研究中新型FMD疫苗的辅助。dectin-2是包含
简介尽管肺移植作为终末期肺衰竭治疗方法的接受度日益提高,但肺的长期存活率仍远远落后于其他器官。这反映在与心脏、肾脏或肝脏移植相比,肺的排斥率更高 (1)。虽然细胞排斥的诊断和治疗在过去几十年中有了很大的改善 (2),但抗体介导的排斥 (AMR) 越来越多地被认为是发病率、移植失败和慢性排斥的主要原因,而针对细胞免疫的标准免疫抑制疗法无法很好地控制这种排斥 (3, 4)。AMR 的发病机制取决于同种异体特异性 B 细胞的激活,这些细胞会分化为产生供体特异性抗体的抗体分泌细胞。此类抗体与移植物驻留的基质细胞上的同种异体抗原结合,并通过直接和间接机制引发组织损伤 (5-7)。与细胞排斥的情况不同,细胞排斥自器官移植初期就已被认识和研究,而 AMR 直到最近才被发现是一种独特且具有挑战性的临床实体 (8)。因此,虽然这种排斥形式的病因、发病机制和治疗方法尚不清楚,但临床需求证明有必要对这一过程进行重点研究。
液态液相分离(LLP)是一种生理现象,与油和水的混合相同,从而产生具有多种物理特性的隔间。生物分子冷凝物是由LLP引起的,是基因表达和对照的关键调节剂,在恶性肿瘤的背景下具有特殊的意义。最近的研究揭示了LLP与癌症之间的紧密联系,该联系深远影响了癌症进展的各个方面,包括DNA修复,转录调节,癌基因表达以及在癌症微环境中形成关键的无膜细胞器。本综述提供了从分子到病理水平的LLP演变的全面说明。我们探索了生物分子冷凝物通过该机制控制各种细胞生理过程,包括基因表达,转录控制,信号转导和对环境压力源的反应。此外,我们集中于潜在的治疗靶标和与LLP相关的小分子抑制剂的发展。了解LLP及其在肿瘤环境中的相互作用的作用有望增强癌症治疗策略,尤其是在克服耐药性挑战方面。这些见解提供了创新的观点和支持癌症治疗的支持。
Clemson大学Clemson,SC 29634 2癌症系统成像UT MD Anderson癌症中心休斯顿TX 77030 3 Sporos Bioventures 3000 Bissonnet,Belmont Suite,Belmont Suite 5303 Houston,TX 77005,TX 77005 4真核病病病原中心Innovation Innovation Innovation Center of Clemson Clemson Clemson Clembriide Clembriide Clembri岛,SC296634444434344。 98110 6西雅图结构性基因组学中心全球感染疾病研究中心研究西雅图儿童研究所西雅图,西雅图98109 7免疫学系杜克大学医学院医学院达勒姆大学北卡罗来纳州27710
,包括横向流体打击(LFP)诱发的脑损伤(LFP),侧向控制皮层撞击损伤(CCI)及其气动变体(Lighthall,1988)和电磁变体(Brody et al。,2007; Onyszchuk et an e an feen and frow)andi and and froge and and and and and and and and from and from.,and and and from an。 1981年),等等。FPI模型是最成熟且常用的最常用的,尽管它可以改进,以更好地理解人类中TBI的后果。不能排除任何其他模型的开发,特别是如果这样的模型改善了控制产生TBI的主要参数的效率,例如,峰值压力及其持续时间有助于控制损伤严重性,而不是提及无需进行强化训练的无需进行的实现的可行性,以及其他改进。完全控制脑损伤的严重性将是理想TBI模型的最佳功能,因此,任何改善现有模型功能的其他方法都将有助于更好地了解基本机制以及设计最佳的治疗策略。尽管LFP模型是最广泛使用和良好的特征性的,该模型被非渗透和非渗透性TBI(Katz and Molina,2018年),但在该模型中,有些问题尚未解决,包括活塞的固有特征,包括需要经常润滑的材料,因为它的材料构成了,因为易于构建的材料是造成的。 解决方案。在这方面,Kabadi等人。 同时,Ouyang等人。在这方面,Kabadi等人。同时,Ouyang等人。此外,通常使用的空气透明管会吸收一些压力,并且释放质量击中活塞的机制需要每个用户的技能。(2010年)旨在通过引入一个使用双动力活塞气动系统的空气驱动撞击器来增强原始方法,从而精确地控制输送到栓子的冲击力,从而达到所需的损伤强度水平。虽然对撞击器的释放进行了电子调节,但基本原理仍然类似于以流体大球的形式诱导压力波。(2018)对原始设计进行了修改,以应对与摆模型相关的挑战,并旨在消除手动操纵该设备的必要性。这些作者用不锈钢圆柱体代替了有机玻璃管,并结合了使用电磁控制的量角器来精确地对齐摆,然后撞击了栓塞,达到了所需的压力来诱导脑损伤。另一方面,受控皮质冲击(CCI)模型通过利用电磁活塞直接影响硬脑膜,提供了一种替代方法来诱导不同程度的损害(Brody等,2007; Osier and Dixon,2016)。该模型允许对参数(例如速度,加速度,角度和撞击器渗透)等参数进行电子控制。因此,它产生了更具局部损害的形式,从而导致不同的形态和行为结果可能与LFP模型产生的损害相差。因此,我们的研究主要旨在将这种创新TBI设备的优势与其他流体打击乐器进行比较。此外,格拉斯哥昏迷量表已将TBI分类为严重,中度和轻度,以及计算机断层扫描的结果是正常和负异常(Capizzi等,2019)。众所周知,在TBI模型(出血,脑膜损伤,坏死等)初次损害之后,不同的生化和分子改变
败血症是一种异质性疾病,被定义为威胁生命的器官功能障碍,这是由于宿主对感染的失调反应引起的。对于某些人来说,败血症呈现为一种主要抑制性疾病,而另一些败血症则经历了促炎症状况,可以在“细胞因子风暴”中达到顶峰。经常,患者经历了同时进行过度炎症和免疫抑制的迹象,这是指导有效治疗的困难。尽管近年来重症监护病房的死亡率有所提高,但在接下来的一年中,有三分之一的出院患者死亡。一半的盐后死亡是由于预先存在的疾病加剧而导致的,而一半是由于免疫系统恶化引起的并发症。已经提出,对感染的强烈和失调的反应可能引起免疫细胞中不可逆的代谢重编程。作为脊椎动物免疫保护的关键部门,对适应性免疫系统的改变可能会带来毁灭性的影响。的确,在败血症中观察到淋巴细胞的明显耗竭,与死亡率的增加相关。这种败血症诱导的淋巴细胞减少对T细胞的反应方式产生了深远的影响,但同样对B细胞引起并由不同CD4 + T卵泡助手(T FH)细胞支持的体液免疫反应。通过功能障碍对剩余的淋巴细胞的功能障碍进一步加剧了免疫抑制状态,包括表达功能障碍或耗尽表型的细胞的存在。本综述将特别关注脓毒症如何破坏适应性免疫系统,并仔细研究B细胞和CD4 + T FH细胞如何受脓毒症的影响以及对体液免疫的相应影响。
感觉神经元感知致病性浸润,以告知宿主38防御的免疫协调。然而,感官神经元免疫相互作用主要显示为39驱动先天免疫反应。体内记忆,无论是保护性还是破坏性,在生命的早期就获得了40次获得,如早期暴露于链球菌和过敏性疾病发作所证明的那样。41我们的研究进一步定义了感觉神经元对肺部体液免疫的影响。42使用肺炎链球菌的鼠模型前暴露和感染,以及43种过敏性哮喘的模型,我们表明B细胞和血浆细胞44募集和抗体产生需要感觉神经元。对肺炎链球菌的响应,感觉神经元耗竭45导致细菌负担更大,B细胞群体减少,IgG释放和中性粒细胞46刺激。相反,在过敏原诱导的气道炎症过程中,感觉神经元耗竭降低了B细胞群体,IgE和47个哮喘特征。在每个模型中释放的感觉神经元48神经肽都不同。有细菌感染,优先释放了血管活性肠49多肽(VIP),而物质P则释放出对哮喘的反应50。将VIP施用到感官神经元缺失的小鼠中抑制了细菌51负担并增加了IgG水平,而VIP1R缺乏症增加了对细菌52感染的敏感性。用物质P处理的感官神经元缺乏的小鼠增加了IgE和哮喘,而物质P遗传消融导致IgE钝化,类似于感觉神经元缺乏的54次哮喘小鼠。58这些数据表明,免疫原差异刺激感觉55神经元释放特定的神经肽,这些神经肽是特异性靶向B细胞的。靶向感官56神经元可能会为57和/或加重的体液免疫提供的疾病提供替代治疗途径。