摘要 - 先前的研究发现,基于肌电图(EMG)的假体设备可提供更高的握力,提高功能性能,并且比常规假体具有更大的运动范围。但是,认知工作量(CW)仍然是可能对设备的可用性和满意度产生负面影响的问题之一。为了在设计周期的早期评估假肢设备的CW,首先需要选择最合适的措施。因此,这项研究的目标是:(1)回顾以前基于EMG的假体设备评估中使用的CW测量技术; (2)提供指南以选择最合适的测量技术。发现的结果表明,认知绩效模型(CPM),主观措施,任务绩效指标和某些生理指标在检测假体设备配置之间的CW差异方面很敏感,因此可能是对这些技术的可用性评估的有用工具。但是,为了降低侵入性和成本,与生理测量相比,主观工作量度量,任务绩效和CPM等方法更有益。本研究提出的指南可能有益于选择最合适的CW测量技术,以提高灵敏度和准确性并降低侵入性和成本。
图 2) ENG 分类信号处理的示意图;a) 记录的 ENG 数据集分为训练集和测试集;b) 预处理块应用信号分割和去噪;c) 从运行观察窗口提取和选择特征;d) 数据驱动的分类模型训练;e) 使用从训练中校准的模型对从测试集中提取的特征进行验证以进行类别预测;f) 根据分类器结果驱动设备的决策规则。
摘要:这项研究的目的是回顾用于制造永久修复体的3D可打印材料和3D打印技术目前可用的科学证据,重点介绍临床上相关的材料特性。在2013年1月至2023年11月出版的文章中,在四个数据库(Medline/PubMed,Scopus,Cochrane库,科学库)上进行了文献搜索,使用了免费单词的组合:((恢复性牙科或假体牙科或假体牙科))和(3D打印或附加的制造或快速制造或快速制造或快速原型)和材料和材料和材料和材料和材料。两名审稿人筛选了2.468独特研究的标题和/或摘要。总共选择了83项研究进行全文阅读,从中包括36个研究。评估的变量是机械性能,在大多数情况下报告了积极的结果,尺寸的准确性和拟合度,报告了相互矛盾的结果,并以正面的,美学特性为优势,并具有正面的报告,但几乎没有解决,并且几乎无法探索在独立研究中。尽管有许多积极的研究支持,但也检索了具有负结果的论文。美学和生物学特性仍然没有探索。仍然缺乏可行的3D可打印修复和肢体修复材料的结论性证据。应通过定义实验室测试的国际标准来加强研究,并在临床前数据有希望的情况下进行临床试验。
(!“#$”%&'%()#'*+),“ - +。“#+”)#/ 0“ 1)%$ 2”#$'&345*。+*,3“ ##*5,6)#。) div>- $)$“ 7#.6”%*。
3.与聋哑运动员的特别对话会 2023年聋哑足球世界锦标赛亚军成员冈田拓哉(埼玉县聋哑足球俱乐部、越谷FC)、中井健人(TDFC、LesPros Tokyo)、经理植松隼人 ★秘密嘉宾登场! !
1。ST Microelectronics completes acquisition of Norstel AB, a SiC wafer manufacturer, ST Microelectronics, 2019/12/2: https://www.st.com/content/st_com/ja/about/ media-center/press-item.html/c2930.html 2.ROHM集团Sicrystal和St Microelectronics同意提供碳化硅(SIC)Wafers多年来,ST Microelectronics,2020/1/15:https://newsroom.st.com/ja/ja/ja/media-ia-center/media-center/press-center/press-item/press-item.html/c2936.html,3。3.cree |。ST Microelectronics在意大利建立了新的集成SIC WAFER工厂,ST Microelectronics,2022/10/5:https://newsroom.st.com/ja/ja/media-center/media-center/press-item.htm.html/ c3124.html 5。Stmicro在意大利建立新的SIC WAFER工厂,在欧洲首次,Nikkei Crosstech,2022/10/18:https://xtps://xtech.nikkei.com/atcl/news/news/news/news/news/13938/13938/ 6.Infineon和Cree同意长期供应Sic Wafers,Infineon,2018/3/16:https://www.infineon.com/cmms/cmms/jp/jp/jp/jp/about-infineon/press/press/press/press/press/press/press/press-releases/2018/2018/Wolfspeed builds a new large-scale SiC factory in Germany, production begins in 2017, Nikkei Crosstech, 2023/2/28: https://xtech.nikkei.com/atcl/nxt/news/18/14642/ 8.Infineon收购了硅碳化物专家Siltechtra,Infineon,2018/12/7:https://www.infineon.com/cms/cms/cms/jp/jp/about-infineon/press/press/press/press/press-releases/2018/2018/2018/Infineon通过GT Advanced Technologies,Infineon,2020/11/9:https://wwwww.infineon.com/cms/cms/cms/jp/jp/about-infineon/ press/press/press/press/press/2020/infxx20202011-2011-2011-2011-014.html 10。有关电力半导体的SIC外延晶片:与Infineon Technologies签署的销售和联合开发协议,Showa Denko,2021年5月6日:https://wwwwww.resonac.com/jp/
摘要 — 为了提供适当程度的刺激,必须根据个人的感知阈值校准视网膜假体(“系统适配”)。然后可以停用无功能电极以降低功耗并改善视觉效果。然而,阈值不仅在不同电极之间变化很大,而且随着时间的推移也会变化很大,因此需要更灵活的电极停用策略。在这里,我们提出了一个可解释的人工智能 (XAI) 模型,该模型适用于大型纵向数据集,可以 1) 根据常规临床测量(“预测因子”)预测制造商选择在哪个时间点停用电极;2) 揭示这些预测因子中哪些最重要。该模型根据临床数据预测电极停用的准确率为 60.8%。使用系统适配数据时性能提高到 75.3%,当有后续检查的阈值时性能提高到 84%。该模型进一步确定了受试者的年龄和失明发作时间是电极停用的重要预测因子。依赖于常规临床措施的电极失活的精确 XAI 模型可能使视网膜植入物和更广泛的神经假体界受益。
1荷兰神经科学研究所,Meibergdreef 47,1105 Ba Amsterdam,荷兰BA阿姆斯特丹2号,荷兰2匹兹堡医学院,匹兹堡医学院,1622年,匹兹堡大学,匹兹堡,匹兹堡,匹兹堡,宾夕法尼亚州15219,Unity the Unity the Underiation Instrucation,University Instrucation,Unterional Instrucation,Utrrytry unmort ushort ushortzt荷兰4视觉脑疗法实验室,索邦大学,国家德拉·桑特(National de laSanté等人) Freiburg, Germany 6 BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany 7 Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany 8 Chalmers University of Technology, Chalmersplatsen 4, 412 96瑞典哥德堡9号综合神经生理学系,VU大学,DE BOELELAAN 1085,1081 HV AMSTERDAM,荷兰10号HV Amsterdam,荷兰10精神病学系,学术医学中心,Postbus 22660,1100 DD Amsterdam,荷兰1100 DD Amsterdam,荷兰11.这些作者为这项工作贡献了同等的贡献。∗作者应向谁解决任何信件。
2.1。机电一体化设计的进步。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。508 2.2。传出界面:假肢的神经解码方法。。。。。。。。。。。。。。。510 2.3。 传递界面:感觉恢复和增强。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 513 2.4。 工程人体,用于身体和神经界面。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 516 3。 差距,未来方向和研究指南。 。 。510 2.3。传递界面:感觉恢复和增强。。。。。。。。。。。。。。。。。513 2.4。工程人体,用于身体和神经界面。。。。。。。。。。。。。。。。。。。。516 3。差距,未来方向和研究指南。。。。。。。。。。519 3.1。需要家庭试验和技术有效性的证据。。。。。。。。。。。。519 3.2。假体是否需要?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。519 3.3。 TRL指导未来的研发。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 520 3.4。 需要协同方法集成假体技术。 。 。 。 。 。 。 520 4。 结论。 。 。 。 。 。 。 。519 3.3。TRL指导未来的研发。。。。。。。。。。。。。。。。。。。。。。。。。520 3.4。需要协同方法集成假体技术。。。。。。。520 4。结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。521