图1-1:基于分布的偏置校正方法的示例。8图2-1:使用乘法性分位数映射的偏见和原始访问-CM2校正和原始访问CM2的CCS数据。14图2-2:比较了9个指数的几种方法学变异的性能的热图。16图3-1:VCSN的Tasmin的年度气候,偏置校正CCAM输出,Loyo CV和RAW CCAM输出以及VCSN的偏置。17图3-2:VCSN累积降水的年度气候,偏见校正了访问-CM2 - CCAM输出,Loyo CV和Raw Access-CM2-CCAM输出以及VCSN的偏见。18图3-3:tasmax的VCSN的冬季气候,偏见校正了ec-earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。19图3-4:偏置校正的GFDL-ESM4 - CCAM输出的NZ 12个位置的长期月度平均累积降水量。20图3-5:VCSN的TXX年度气候,偏置校正Ec-Earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。21图3-6:VCSN一天的最高强度降雨的年度气候,偏见校正了EC-EARTH3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。22图3-7:Perkins技能分数比较了湿法长度与VCSN的直方图与VCSN的偏置校正Ec-Earth3-CCAM输出,相应的交叉验证的校正后的输出和原始输出。23图3-8:夏季和冬季的历史和SSP3-7.0实验之间的气候变化信号在这些季节内积累的降水量。3924图3-9:历史和SSP3-7.0实验和CCS的霜冻天数量。25图3-10:偏置校正的访问-CM2输出与历史和SSP3-7.0实验中每日累积降水的相应原始模型输出之间的时间相关性。26图A-1:线性间隔节点,对数间隔节点和Sigmoid间隔节点的分位间距。33图A-2:从分布中绘制的虚拟数据,参考和模拟数据具有相同的平均值和高方差。35图A-3:虚拟数据,参考和模拟数据从平均值和较高方差的分布中绘制。36图A-4:与分组器的乘法降水虚拟数据的每月平均值。37图A-5:在SSP370场景下,访问CM2-CCAM的夏季和冬季气候变化信号。38图A-6:在SSP370方案下,Mahanga站上的气候变化信号,强调了EQM对趋势的通胀影响,而没有明确的趋势保存。
摘要 — 本文介绍了商用碳化硅 (SiC) MOSFET 器件在高漏源电压下重复性短路应力下的短路 (SC) 性能。研究了两种方案来评估栅源电压 (V GS ) 去极化和短路持续时间 (T SC ) 减少的影响。V GS 去极化可降低功率密度,并允许在增加短路持续时间 T SCmax 的情况下保持安全故障模式 (FTO:开路故障)。结果表明,SiC MOSFET V GS 去极化不会降低 T SCmax 下的短路循环能力。但是,使用 V GS 去极化可以使性能接近 IGBT 稳健性水平,在 T SC =10 µ s 下循环近 1000 次。短路测试期间芯片温度变化的模拟表明,性能下降仍然归因于短路循环期间结温 (TJ ) 的升高,这导致顶部 Al 融合,从而导致厚氧化物中出现裂纹。
Charavel, R. 等人。下一代深沟槽隔离,适用于具有 120 V 高压设备的智能电源技术。微电子可靠性 50,1758–1762(2010 年)。Voldman, SH 新型接触式多晶硅填充深沟槽 (DT) 偏置结构及其电压偏置状态对 CMOS 闩锁的影响。2006 年 IEEE 国际可靠性物理研讨会论文集 151–158(2006 年)。doi:10.1109/RELPHY.2006.251208。
由光子猫态形成的猫态量子比特具有偏置噪声通道,即一种类型的错误占主导地位。我们通过将猫态量子比特耦合到光学腔,证明了这种偏置噪声量子比特也有望用于量子拉比模型(及其变体)的容错模拟。使用猫态量子比特可以有效增强反向旋转耦合,使我们能够探索依赖于反向旋转相互作用的几种迷人的量子现象。此外,偏置噪声猫量子比特的另一个好处是两个主要错误通道(频率和幅度不匹配)都呈指数级抑制。因此,模拟协议对于确定投影子空间的参数驱动的参数误差具有鲁棒性。我们分析了三个例子:(i)量子态的崩溃和复兴;(ii)隐藏的对称性和隧穿动力学;(iii)成对猫码计算。
结果:对于BP ND,ZTE-MRAC在纹状体区域显示出最高的准确性(偏差<2%)。Atlas-MRAC在尾状核(-12%)中表现出明显的偏见,而MaxProb-MRAC揭示了壳虫的实质性偏置(9%)。r 1估计值对所有MRAC方法都有边缘偏差(-1.0 - 3.2%)。maxprob-MRAC显示R 1和BP ND的最大主体间变异性。纹状体区域的标准化吸收值(SUV)显示出ZTE-MRAC的平均偏差最强(〜10%),尽管随着时间的推移和最小的主体间可变性持续不变。ATLAS-MRAC随着时间的推移(+10至-10%)的偏置变化最大,其次是MaxProb-MRAC(+5至-5%),但MaxProb显示出最低的平均偏差。 对于小脑,MaxProb-MRAC显示出最高的变异性,而Atlas和ZTE-MRAC随着时间的流逝,偏差是恒定的。ATLAS-MRAC随着时间的推移(+10至-10%)的偏置变化最大,其次是MaxProb-MRAC(+5至-5%),但MaxProb显示出最低的平均偏差。对于小脑,MaxProb-MRAC显示出最高的变异性,而Atlas和ZTE-MRAC随着时间的流逝,偏差是恒定的。
所提出的 VCO 架构基于参考文献 [16-18] 中研究的 Colpitts 结构以及作者在 [12] 中提出的结构,如图 2 所示。该振荡器的有源部分由两个晶体管 pHEMT 1 和 pHEMT 2 组成:每个晶体管有 4 个指状物,栅极长度和宽度分别为 0.25 µm 和 20 µm。指状物数量越多,输出功率就越大 [19]。每个晶体管都偏置在工作点 (VDS=2.2 V, VGS -0.6 V),三个电感 Ld1、Ld2 和 Lg 分别等于 0.15 nH、0.15 nH 和 0.1 nH。电路的性能在很大程度上取决于偏置条件 [20],因此偏置电压和电感的值需要仔细选择。 VCO 的谐振电路基于两个源漏短路晶体管 pHEMT 3 和 pHEMT 4。因此,这两个晶体管充当变容二极管,其电容值由施加到其栅极的电压源 Vtune 调整。
基于事件的视觉传感器 (EVS) 最近引起了空间传感界的关注,因为它具有低延迟、宽动态范围以及动态视觉信息稀疏表示所需的最小数据要求等性能优势。迄今为止,已有多项研究证明了它们在 SDA 任务中的实用性,其中两项研究甚至报告了绝对灵敏度方面限制性能的经验测量结果。在这两项研究中,与在相同环境条件下运行的优化的基于帧的科学 CMOS 相机相比,EVS 未能达到相同的灵敏度,并且都报告了随着目标速度的增加灵敏度下降(通过以不同的速率扫描天空来测量)。值得注意的是,两项研究都没有彻底探索或描述 EVS 中提供的大量用户定义的传感器偏差。本文应用对 EVS 偏差优化和噪声性能的理解最新进展来探索可调 EVS 偏差所提供的多种自由度。通过有针对性地探索可用的参数空间,我们尝试在亚像素、暗淡目标检测这一具有挑战性的任务中突破 EVS 的性能极限,并确定可应用于任何 COTS EVS 的通用偏置技术和原理。新的模拟工具可以准确模拟 EVS 对暗淡快速移动点源的响应。使用 DAVIS346 EVS 和自定义实验室设置(校准为模拟不同亮度和速度的点源物体),我们展示了 11 种不同的手动选择偏置配置的灵敏度结果。结果,我们接近优化了 SDA 任务的 EVS 偏置设置,与默认或简单偏置配置相比,灵敏度提高了 1.6 m V(≈ 4.3 × 暗淡),并且能够检测到移动速度快 6.6 倍的物体。我们的结果表明,通过采用更优化的偏置配置,可以显著改善先前关于扫描时 EVS 限制幅度和灵敏度的报告。
日志(y)测试统计D.F.概率。BREUSCH-PAGAN LM 267.0204 10 0.0000 PESARAN缩放LM 56.35347 10 0.0000偏置校正的缩放尺度LM 56.27283 10 0.0000 PESARAN CD 16.26263 10 0.0000 LOG(K)测试统计D.F.概率。Breusch-Pagan LM 176.4890 10 0.0000 Pesaran缩放LM 36.11004 10 0.0000偏置校正的缩放尺度LM 36.02939 10 0.0000 PESARAN CD 8.215832 10 0.0000 log(L)测试统计D.F.概率。Breusch-Pagan LM 303.6362 10 0.0000 Pesaran缩放LM 64.54102 10 0.0000偏置校正的缩放缩放率LM 64.46037 10 0.0000 Pesaran CD 17.42295 10 0.0000 log(x)测试统计D.F.概率。breusch-pagan LM 100.7267 10 0.0000 Pesaran缩放LM 19.16907 10 0.0000偏置校正的缩放缩放尺度LM 19.08843 10 0.0000 Pesaran CD 6.725827 10 0.0000 log(m)测试统计D.F.概率。breusch-pagan LM 187.3234 10 0.0000 pesaran缩放尺度LM 38.53269 10 0.0000偏见校正的缩放尺度LM 38.45204 10 0.0000 PESARAN CD 12.35386 10 0.0000
选择最佳选择 • CLIMAX(偏置载波操作)和 BSS(最佳信号选择器)操作实现的主要目标是仅使用一个频率即可在大区域提供足够的覆盖范围,并绕过可能的地理障碍。因此,可以将多个发射器和接收器放置在一个区域中,以较小的偏移量在同一频率上操作 • 这些功能集成到 VCCS SDC-2000 中,可自动用于所有需要高质量接收分析和偏置载波系统的系统 • 操作员可以手动选择参与此过程的无线电站点