简介:肿瘤缺氧和入侵对光动力疗法(PDT)在三阴性乳腺癌(TNBC)中的功效提出了重大挑战。这项研究开发了一种线粒体靶向策略,该策略将PDT和基因治疗相结合,以相互促进并应对挑战。方法:带正电荷的两亲材材料三苯基二苯基 - 生育酚聚乙烯乙二醇琥珀酸酯(TPP-TPGS,TPS)和光敏剂氯化物E6(CE6)由Hydropolopic Itsaction形成TPS@CE6纳米颗粒(NPS)。他们静态凝结的microRNA-34A(miR-34a)形成稳定的TPS@CE6/miRNA NP。结果:首先,CE6破坏了溶酶体膜,然后通过TPS@CE6/miRNA NPS成功递送miR-34a。同时,miR-34a减少了ROS耗竭并进一步增强了PDT的有效性。因此,PDT和基因治疗之间的相互促进导致抗肿瘤作用增强。此外,TPS@CE6/miRNA NP通过下调caspase-3促进了凋亡,并通过下调N-钙粘着蛋白来抑制肿瘤细胞迁移和侵袭。此外,体外和体内实验表明,TPS@ce6/miRNA NP达到了出色的抗肿瘤作用。这些发现强调了通过PDT和基因治疗的协同作用增强的抗癌作用和肿瘤细胞迁移的降低。结论:综上所述,CE6和miR-34a的靶向共递送将促进光动力和基因纳米医学在治疗侵袭性肿瘤(尤其是TNBC)中的应用。关键词:光动力疗法,基因疗法,缺氧,入侵,线粒体靶标,三阴性乳腺癌
刺激响应性纳米平台的结构和特性对环境因素敏感,可用于按需释放药物到病理部位。1 然而,由于人体生理的复杂性,使用响应生理刺激(即 pH、酶和还原剂)的纳米粒子精确控制药物释放仍然具有挑战性。为此,已经开发出各种响应外部刺激(即光、超声波、电场和磁场)的药物输送系统 (DDS)。2 其中,光响应系统脱颖而出,因为光能够以高时空分辨率对目标释放进行远程和非侵入性控制。3,4 通常外部光用于影响光敏部分的化学结构和/或极性,例如偶氮苯、5 螺吡喃 6
本手册中介绍的光敏设备是用于扩展人类视觉的用途极为广泛的工具。过去几十年中开发的各种类型的设备使得人类眼睛的非凡检测和观察能力可以匹敌甚至超越许多(如果不是全部的话)能力。这些设备对光谱中所有颜色的敏感度都超过了眼睛,甚至可以穿透可见光区域,进入紫外线和红外线。它们可以观察飞行中的子弹或跟踪宇宙射线粒子。它们可以伴随火箭进入外太空或探索钻入地壳深处的洞。这些设备的可用性已导致广泛的实际应用。真空光电管主要用于辐射测量。气体型光电管通过将记录在胶片上的声音模式转换为电信号,使在电影中添加声音成为可能。倍增光电管具有巨大的放大能力,广泛应用于光电测量和控制设备以及日益发展的闪烁计数领域。光电管由于其简单、成本低、灵敏度高,在工业光电控制领域应用最为广泛。
我们考虑估计一组高度光敏样品的哈密顿参数,这些样品在吸收几个光子 N abs 后会受损,总时间为 T 。样品被建模为双模光子系统,其中光子同时获取有关未知参数的信息并以固定速率被吸收。我们表明,任意强度的相干态可以以最多与 N abs 和 T 线性相关的速率获取信息,而具有有限强度的量子态可以克服这个界限。我们将量子优势表征为 N abs 和 T 的函数,以及它对缺陷(非理想探测器、量子光子态的有限制备和测量速率)的稳健性。我们讨论了腔 QED 中的实现,其中通过将原子集合耦合到腔来准备和测量 Fock 态。我们表明,由于腔体和原子之间的集体耦合而产生的超辐射可以用来提高测量的速度和效率。
光动力疗法 (PDT) 是一种很有前途的癌症治疗方式。在这里,我们使用正交纳米结构方法(遗传/化学)来设计 M13 噬菌体作为靶向载体,以有效地光动力杀死癌细胞。M13 经过基因重构,在噬菌体尖端展示一种能够结合表皮生长因子受体 (EGFR) 的肽 (SYPIPDT)。重构的 M13 EGFR 噬菌体表现出 EGFR 靶向性,并被过度表达 EGFR 的 A431 癌细胞内化。使用正交方法进行基因展示,然后对 M13 EGFR 噬菌体进行化学修饰,在衣壳表面结合数百个玫瑰红 (RB) 光敏分子,而不会影响 SYPIPDT 肽的选择性识别。 M13 EGFR - RB衍生物在内化后在细胞内产生活性氧,在超低强度白光照射下激活。在M13 EGFR噬菌体的皮摩尔浓度下观察到癌细胞的杀伤活性。
摘要:越来越多地,正在用病毒介导的基因疗法治疗视网膜病理。能够以光特定针对视网膜病理区域的病毒转基因表达,我们确定了视网膜组织的体内光活化基因表达para-digm。基于诱导型Cre/Lox系统,我们发现乙基雌二醇是他莫昔芬的合适替代品,因为乙基雌二醇更适合通过光敏保护化合物(即“笼子”)修饰。在计算机结合研究中支持了突变的人雌二醇受体的乙基甲基二醇作为配体的鉴定,该研究表明笼中乙基雌二醇的结合降低。用依赖性的TDTOMATO报告基因转基因注入双转基因GFAP-CREERT2小鼠的眼睛中,然后用450 nm的光照射。光活化显着增加了视网膜TDTOMATO表达。因此,我们展示了为眼睛开发靶向的,光介导的基因治疗的第一步。
视网膜色素变性 (RP) 是一组罕见的遗传性退行性眼病,影响着全球多达 150 万人。RP 是由影响视网膜的多个基因突变引起的,导致视力逐渐丧失,最终失明,症状通常在儿童时期显现,目前无法治愈。RP 的特征是双侧视杆感光细胞丧失,随后视锥感光细胞继发丧失,视网膜色素上皮 (RPE) 变性。RHO 介导的常染色体显性 RP 是由编码视紫红质的基因突变引起的,视紫红质是一种光敏 G 蛋白偶联受体,可启动视杆感光细胞中的光转导级联 (Zhen 等人,2023 年)。USH2A 基因突变是常染色体隐性 RP 和 Usher 综合征的主要原因。 USH2A 编码 usherin,这是一种跨膜蛋白,主要在视网膜的感光层、耳蜗的毛细胞和许多组织的基底膜中产生(Li et al. 2022)。
摘要。由于世界人口和生产量的增加,对能源的需求也逐年增加。利用太阳能是解决世界各国以及我国能源问题的最有效途径之一。太阳能是廉价且环保的资源之一,制造基于无机和有机半导体材料的廉价且有前景的太阳能电池具有重要意义。世界各地正在进行研究和开发工作,旨在创造和生产基于半导体聚合物和酞菁染料的新型太阳能电池。在这方面,由基于半导体聚合物材料、金属和非金属原子的光敏染料以及酞菁染料获得的太阳能电池由于其灵活性、设计简单、环保和经济性而成为目前可用的太阳能电池之一。提高基于有机半导体化合物的复合材料的效率,确定其物理化学和操作特性,识别可以替代硅基太阳能电池板投入生产的太阳能电池的半导体聚合物和酞菁基染料,正在对太阳能电池提取中使用太阳能元素进行大规模的研究和开发工作。
近年来,人们对磁场对生物系统的影响的研究兴趣浓厚,尤其是与磁感应有关的研究——磁感应是生物体感知地球地磁场以进行导航的能力。目前,有三种公认的主要理论来解释这一有趣的现象。例如,一种假设认为,一些候鸟可能依靠喙中的微小磁性沉积物来定位。然而,由于缺乏确凿的证据,这一想法仍然是研究人员争论的话题。1 另一种有趣的理论认为,某些光敏蛋白(称为隐花色素)存在于选择性动物的眼睛中,可能充当地球磁场的化学探测器。这一想法近年来得到了广泛的关注,但与磁性沉积物假设一样,它也等待进一步的实验验证。磁感应的一个有趣的替代理论围绕磁趋化细菌 (MTB) 展开,这是一种沿着地磁场线定位的微生物。磁感应假说认为,这些与动物共生的细菌可能成为动物磁感应的潜在机制。”2,3 该理论提出,MTB 是长期存在的磁感应之谜的答案。