CK Sheng*、MGM Sabri、MF Hassan、EAGE Ali 马来西亚登嘉楼大学科学与海洋环境学院,21030 瓜拉尼鲁斯,登嘉楼,马来西亚 这项工作首次实施了基于光声 (PA) 技术的光热波表征,以研究在不同温度下退火的 Si 晶片 (Au/Si) 上沉积的金薄膜层的热特性和载流子传输特性。XRD 图案表明,在退火温度为 330 o C 时追踪到了 Au81Si19 相的亚稳态金 (Au) 硅化物,当温度进一步升高到 370 o C 时,该结构消失。结果表明,获得 Au/Si 结构的 PA 信号低于纯 Si 晶片。通过拟合 PA 信号相位关系阐明了 Si 和 Au/Si 的热特性和载流子传输特性。结果表明,随着退火温度的升高,Au/Si 的热扩散率和表面复合速度增加,复合寿命缩短。然而,当温度接近 370 o C 时,表面复合和热传输过程减弱,这可能是由于硅化物团簇的断裂造成的。(2021 年 7 月 20 日收到;2021 年 10 月 29 日接受)关键词:金硅化物,热退火,光声,热扩散率,复合
太阳能驱动的蒸发是从盐水或废水中获取淡水的新兴过程,其中光热材料在其中起着至关重要的作用。大量努力致力于通过材料和设备设计促进能量转换效率。在当前的审查中,我们讨论了影响蒸发效率和长期性能的主要因素,包括选择光热材料,促进蒸发效率以及解决扩展问题的解决方案。材料成分和结构都会影响入射光的吸收和反射,并且可以通过减少热量损失,扩大的表面积和回收潜热来提高蒸发效率。缩放可以通过调整表面特性和结构来解决。
可生物降解的纳米材料可以显着改善纳米医学的安全性。锗纳米颗粒(GE NP)是作为生物医学应用的有效光热转化器而开发的。ge NP由飞秒激光在液体中合成的液体通过氧化机制迅速溶解在生理样环境中。GE纳米颗粒的生物降解在体外和正常组织中保存在半衰期短达3.5天的小鼠中。GE NP的生物相容性通过血液学,生化和组织学分析在体内确定。在近红外光谱范围内GE的强烈光吸收可在静脉注射GE NP后对体内植入的肿瘤进行光热治疗。光热疗法导致EMT6/P腺癌肿瘤生长的3.9倍降低,而小鼠的存活显着延长。在纳米材料的静脉内和肿瘤内施用后,GE NP(808 nm处的7.9 L G - 1 cm-1)的出色质量渗透使骨骼和肿瘤具有光声成像。因此,强烈吸收近红外的生物降解纳米材料对晚期治疗学有希望。
最近发现二维(2D)过渡金属碳化物和硝酸盐(MXENES)由于其独特的电气,光学和化学性质而受到了极大的关注。这些非凡的特性使它们成为各种应用,包括通过光热效应的多模式肿瘤疗法的合适候选者。在这项工作中,我们演示了如何通过应用连续的超声处理过程来减少1-5 µm大的Ti 3 C 2单层MXENE片。不同的微观技术已被用来可视化超大单层Ti 3 C 2纳米片的形成。所制备的Mxene纳米片在水和乙醇中表现出良好的溶解度。此外,使用(3-氨基丙基)三乙氧基硅烷(Aptes)和聚(3,4-乙二烯二苯乙烯)聚苯乙烯磺酸盐(PEDOT:PSS)用于MXENE纳米片的表面修饰,以打开随后的抗体生物套件的可能性。PEDOT:PSS改善了纳米片的光热转化性能,这是通过在辐射时从48.6ºC增加到58.1ºC的记录,提高了808 nm波长激光器的温度。进一步的体内和体外研究将需要优化Ti 3 C 2纳米片的光热特性。
近十年来,金属纳米粒子因其有趣的光学特性而受到广泛关注[1-8]。这些纳米粒子中表面等离子体的共振导致同步辐射发射增加,这是光束能量散射和相关频率吸收的函数[9,10]。同步辐射发射是光束能量吸收和纳米粒子中诱导产生的热量的函数,长期以来一直被认为是等离子体应用中的副作用[11-15]。最近,科学家发现热等离子体特性可用于癌症、纳米流和光子中的各种光热应用[16-22]。在光热人类癌细胞、组织和肿瘤治疗中,下行激光刺激金属纳米粒子表面等离子体的共振,因此,下行光的吸收能量转化为纳米粒子中的热量[23-25]。产生的热量会破坏纳米粒子附近的肿瘤组织,而不会对健康组织造成任何伤害[26,27]。由于镅纳米粒子与配体连接简单,可用于靶向癌细胞,因此这些纳米粒子更适合用于光热治疗人类癌细胞、组织和肿瘤 [28-32]。本文研究了球形、核壳和棒状镅纳米粒子的热等离子体特性。
图1。拟合半导体聚合物(SPS)和DOX的NIR和pH双反应性纳米颗粒的制备,递送和细胞内药物释放的示意图。纳米颗粒是通过使用pH敏感的共聚物peg-pasp(dip- co -bza-co -dox)封装的胶束来制备胶束的。纳米颗粒被肿瘤细胞内部化,其中溶酶体DOX通过破坏氢氮键从纳米颗粒中释放出来。在NIR辐照后,SPS会产生高温以杀死肿瘤细胞。NIR诱导的高温还可以使DOX渗透在肿瘤组织中,以杀死来自光热疗法(PTT)的肿瘤细胞。因此,SPS和DOX的共递送表现出协同的抗肿瘤效应。PA和PT成像指示光声和光热成像。
目的:将叶酸和环状精氨酰甘氨酰天冬氨酸肽引入带负电荷的脂质包被的混合聚多巴胺-半胱氨酸核心表面,用于递送表柔比星 (EPI) (E/PCF-NPs)。评估了使用 E/PCF-NPs 对三阴性乳腺癌进行化学-光热联合治疗的效果。材料和方法:研究了纳米粒子的升温效应和热毒性。通过透射电子显微镜、扫描电子显微镜和原子力显微镜表征了 E/PCF-NPs 的形态和性质。测定了物理化学性质,包括粒径、zeta 电位、载药量、包封率 (EE%)、稳定性和体外释放。在 4T1 细胞上测定了 E/PCF-NPs 的细胞活力、活性氧 (ROS) 水平、氧化烟酰胺腺嘌呤二核苷酸与其还原形式 (NAD + /NADH) 的比率、细胞凋亡测定和细胞摄取。通过超高效液相色谱/质谱系统进行药代动力学研究和组织分布检测。还评估了近红外 (NIR) 激光辐照下 E/PCF-NPs 的抗肿瘤作用。结果:与单独的光热处理相比,E/PCF-NPs 的球形形态显示出高 EE%,均匀尺寸为 106.7 nm,显着的稳定性,并且在 NIR 激光下大大改善的细胞毒性。E/PCF-NPs 中 EPI 的体外释放对 pH 敏感,在 NIR 激光照射下可获得更大的响应。与单独化疗或光热治疗相比,体外联合治疗显著抑制了4T1细胞的存活率至17.7%,诱导了ROS的产生,并显著降低了NAD + / NADH。在辐射下用E / PCF-NPs治疗可诱导约93.6%的4T1细胞凋亡。体外细胞对E / PCF-NPs的摄取具有时间依赖性。E / PCF-NPs的长期循环和更高的肿瘤蓄积通过NIR激光照射介导的细胞凋亡增强的光热效应导致乳腺肿瘤组织完全消融。结论:E / PCF-NPs由于化疗与光热疗法的协同作用而显示出增强的抗癌作用,可能是癌症治疗的潜在治疗剂。关键词:聚多巴胺纳米粒子,L-半胱氨酸,表柔比星,药代动力学,三阴性乳腺癌
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
为缓解全球气候变暖与能源危机问题,各国都在大力发展可再生能源技术,风能、水电、光伏等大规模可再生能源的接入对系统运行调度和经济调度影响巨大。本文提出一种以风电、光伏发电为主要能源来源的风电-光伏-光热-水电系统经济调度方法。采用长短期记忆(LSTM)神经网络对风电和光伏功率进行预测,并利用拉丁超立方抽样(LHS)方法和同步缩减算法得到10个典型的风电和光伏功率场景。建立风电-光伏-光热-水电-电池日前经济调度模型,并考虑相关约束条件。利用光热、水电站、电池和可转移负荷作为灵活资源,提高风电和光伏发电的渗透率。最后通过3个案例验证了所提模型的可行性。结果表明:(1)LSTM神经网络可以很好地预测风电和光伏发电的输出功率,且均方根误差(RMSE)较小;(2)在可再生能源电力系统中引入可转移负荷和CSP电站可以有效降低风电和光伏发电的波动率和限电率。