太阳(∼ 6,000 K)和外层空间(∼ 3 K)是地球人类两种重要的可再生热力资源。通过光热(PT)进行太阳热转换和通过辐射冷却(RC)获取外层空间的寒冷已经引起了人们的极大兴趣。然而,大多数 PT 和 RC 方法都是静态的和单功能的,只能在阳光下或黑暗下分别提供加热或冷却。在此,开发了一种光谱自适应吸收器/发射器(SSA/E),它具有强太阳吸收和可在大气窗口内(即 8 至 13 μ m)切换的发射率,用于 PT 和 RC 的动态组合,对应于从太阳持续有效地获取能量并将能量释放到宇宙。所制造的 SSA/E 不仅可以在阳光下加热到高于环境温度约 170°C,还可以冷却到低于环境温度 20°C,并且热建模可以捕捉 SSA/E 的高能量收集效率,从而实现新的技术能力。
将等离子体纳米结构与治疗药物以可控的方式结合到可生物降解的聚合物纳米粒子 (NPs) 中,对于纳米医学的不同应用很有意义。通过结合等离子体钯纳米片 (NSs) 的原位形成和封装药物的适当离子性质,可以设计出先进的混合纳米材料。这项研究提出了一种通过 Pickering 双乳液合成混合纳米结构的新方法。当 Pd 前体通过气相程序原位还原时,具有独特近红外 (NIR) 光学特性的各向异性钯 (Pd) NSs 可以组装在 < 200 nm NPs 的聚乳酸-共-乙醇酸基质内。混合纳米材料对外部 NIR 光刺激作出反应。当与疏水性药物结合封装时,在单一阶段中以前所未有的精度组装具有总负载选择性的等离子体纳米结构,为新型治疗诊断学提供了新的机遇,特别是在需要触发药物输送和光热疗法时。
CK Sheng*、MGM Sabri、MF Hassan、EAGE Ali 马来西亚登嘉楼大学科学与海洋环境学院,21030 瓜拉尼鲁斯,登嘉楼,马来西亚 这项工作首次实施了基于光声 (PA) 技术的光热波表征,以研究在不同温度下退火的 Si 晶片 (Au/Si) 上沉积的金薄膜层的热特性和载流子传输特性。XRD 图案表明,在退火温度为 330 o C 时追踪到了 Au81Si19 相的亚稳态金 (Au) 硅化物,当温度进一步升高到 370 o C 时,该结构消失。结果表明,获得 Au/Si 结构的 PA 信号低于纯 Si 晶片。通过拟合 PA 信号相位关系阐明了 Si 和 Au/Si 的热特性和载流子传输特性。结果表明,随着退火温度的升高,Au/Si 的热扩散率和表面复合速度增加,复合寿命缩短。然而,当温度接近 370 o C 时,表面复合和热传输过程减弱,这可能是由于硅化物团簇的断裂造成的。(2021 年 7 月 20 日收到;2021 年 10 月 29 日接受)关键词:金硅化物,热退火,光声,热扩散率,复合
整齐地排列,并且可以接受管状和间质互化结构。au @pda-peg-mtx nps组中glomeruli的体积和大小不一致。肾小球中的细胞比正常人增加,细胞外基质的增加比正常情况大,并且肾小管上皮细胞的排列不规则。肾小管的结构尚不清楚。NIR+AU @PDA-PEG-MTX NPS组与对照组相似。在对照组和两个实验组中,肺组织结构相对清晰,整个肺泡结构相对完整,肺泡壁的厚度相对正常,支气管狭窄的程度相对轻。肺泡上皮细胞,嗜酸性粒细胞和淋巴细胞很少浸润
摘要:在大规模的定向能量沉积加成制造(DEDAM)为海上应用中使用镍铝青铜(NAB)合金的兴趣增加了,但一个挑战在于组成失真,这是由于制造过程中产生的残余应力而产生的。本文介绍了NAB激光热线(LHW)DEDAM的热机械模拟的开发和评估,以预测部分变形。在开放文献和公共数据库中,使用了NAB C95800的温度依赖性特性的缺乏,使用用各种DEDAM过程制造的测试样品测量了NAB C95800的温度依赖性材料和机械性能。Autodesk的NetFabb本地仿真软件是一种基于商业的元素AM求解器,但已使用其热源模型进行了修改,以适应LHW Dedam的振荡激光路径和预热的线原料提供的额外能量输入。热机械模拟。与使用温度依赖性性质的恒定特性在热机械分析中的使用导致明显不同的预测失真,甚至有时甚至可以预测沿相反方向的底物位移。
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备与次纳米计精度进行重新处理,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。
缓解气候变化将需要对可再生能源的大量投资。此外,气候变化将影响未来的可再生能源供应,从而影响电力部门的投资要求。我们使用全球综合评估模型研究了气候对可再生投资的可再生行业投资的影响。我们专注于拉丁美洲和加勒比海地区,这是一个研究不足的地区,但由于其在国际气候缓解和气候变化的脆弱性中的重要作用而引起了人们的关注。我们发现,对于一个财务基础设施疲软的地区,考虑到可再生能源的气候影响会导致额外的投资(在拉丁美洲国家 /地区的2100美元到2100美元)。我们还证明,对气候的影响仅对水力发电的影响(以前的研究的主要重点)显着低估了累积投资,尤其是在间歇性可再生能源的部署的情况下。我们的研究强调了气候对可再生能源的全面分析以改善能源计划的重要性。
如今,随着人口迅速增长和全球衰老,癌症已成为人类死亡的主要原因。 1癌症的常规临床治疗方法,包括手术干预,化学疗法和放疗,仍然具有de neciencies。 手术治疗无法去除所有肿瘤细胞,有时甚至会导致肿瘤细胞的扩散。 由于缺乏肿瘤特异性城市,放疗和化学疗法都会在肿瘤治疗期间引起严重的局部或全身性影响。 2此外,在化学疗法辐射过程中,肿瘤组织或细胞也将对化学治疗药物和放射线具有抵抗力。 基于上述治疗方法的局限性光热疗法(PTT)是一种新型的非侵入性癌症治疗策略,由于其高效,易于操作,可忽略不可效应和良好的生物利用度,因此引起了广泛的关注。 3,4 PTT的核心是光热剂(PTA),可以将近红外(NIR)光转化为细胞毒性热,以杀死肿瘤细胞。 5重要的是,PTT可以忽略细胞抗性的影响,因为它通过诸如蛋白质变性和膜破裂等物理机制诱导细胞死亡。 6此外,它可以实现高精度,因为仅当将NIR光和PTA组合在一起时才产生热效应。 已经建立了广泛的效果,以开发多种类型的无机和有机PTA。 无机纳米材料,包括金纳米颗粒,7,8 sul nanoparticles,9,10和如今,随着人口迅速增长和全球衰老,癌症已成为人类死亡的主要原因。1癌症的常规临床治疗方法,包括手术干预,化学疗法和放疗,仍然具有de neciencies。手术治疗无法去除所有肿瘤细胞,有时甚至会导致肿瘤细胞的扩散。由于缺乏肿瘤特异性城市,放疗和化学疗法都会在肿瘤治疗期间引起严重的局部或全身性影响。2此外,在化学疗法辐射过程中,肿瘤组织或细胞也将对化学治疗药物和放射线具有抵抗力。基于上述治疗方法的局限性光热疗法(PTT)是一种新型的非侵入性癌症治疗策略,由于其高效,易于操作,可忽略不可效应和良好的生物利用度,因此引起了广泛的关注。3,4 PTT的核心是光热剂(PTA),可以将近红外(NIR)光转化为细胞毒性热,以杀死肿瘤细胞。5重要的是,PTT可以忽略细胞抗性的影响,因为它通过诸如蛋白质变性和膜破裂等物理机制诱导细胞死亡。6此外,它可以实现高精度,因为仅当将NIR光和PTA组合在一起时才产生热效应。已经建立了广泛的效果,以开发多种类型的无机和有机PTA。无机纳米材料,包括金纳米颗粒,7,8 sul nanoparticles,9,10和
容量,合适的相变温度和化学稳定性。17 - 20然而,N-烷烃在太阳能利用中的大量应用是在相变期间受到液体泄漏问题的严重限制。将N-烷烃封装以形成核心 - 壳微囊被认为是一种有效的方法。但是,封装过程始终很复杂,并且封装的PCMS的相变焓显着减少。21 - 23因此,迫切需要制造含有高相变焓,形状和热稳定性的PCM的N-烷烃。最近,已引起广泛的关注,以浸入三维(3D)气凝剂中的PCM,以构建形状稳定的防漏PCM复合材料。24 - 26尤其是纳米 - 闪烁的纤维素(NFC)气凝胶不仅可以有效地防止固体 - 液态PCM的泄漏,而且还可以对环境友好。因此,有必要以NFC气凝胶作为支撑材料研究固体 - 液相变化材料。Kim等。 27使用甲基纤维素(CMC)制备的碳泡沫。 此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。 热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。 这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。 Lei等。 28通过准备了一种新颖的CPCMKim等。27使用甲基纤维素(CMC)制备的碳泡沫。此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。Lei等。 28通过准备了一种新颖的CPCMLei等。28通过
目的:将叶酸和环状精氨酰甘氨酰天冬氨酸肽引入带负电荷的脂质包被的混合聚多巴胺-半胱氨酸核心表面,用于递送表柔比星 (EPI) (E/PCF-NPs)。评估了使用 E/PCF-NPs 对三阴性乳腺癌进行化学-光热联合治疗的效果。材料和方法:研究了纳米粒子的升温效应和热毒性。通过透射电子显微镜、扫描电子显微镜和原子力显微镜表征了 E/PCF-NPs 的形态和性质。测定了物理化学性质,包括粒径、zeta 电位、载药量、包封率 (EE%)、稳定性和体外释放。在 4T1 细胞上测定了 E/PCF-NPs 的细胞活力、活性氧 (ROS) 水平、氧化烟酰胺腺嘌呤二核苷酸与其还原形式 (NAD + /NADH) 的比率、细胞凋亡测定和细胞摄取。通过超高效液相色谱/质谱系统进行药代动力学研究和组织分布检测。还评估了近红外 (NIR) 激光辐照下 E/PCF-NPs 的抗肿瘤作用。结果:与单独的光热处理相比,E/PCF-NPs 的球形形态显示出高 EE%,均匀尺寸为 106.7 nm,显着的稳定性,并且在 NIR 激光下大大改善的细胞毒性。E/PCF-NPs 中 EPI 的体外释放对 pH 敏感,在 NIR 激光照射下可获得更大的响应。与单独化疗或光热治疗相比,体外联合治疗显著抑制了4T1细胞的存活率至17.7%,诱导了ROS的产生,并显著降低了NAD + / NADH。在辐射下用E / PCF-NPs治疗可诱导约93.6%的4T1细胞凋亡。体外细胞对E / PCF-NPs的摄取具有时间依赖性。E / PCF-NPs的长期循环和更高的肿瘤蓄积通过NIR激光照射介导的细胞凋亡增强的光热效应导致乳腺肿瘤组织完全消融。结论:E / PCF-NPs由于化疗与光热疗法的协同作用而显示出增强的抗癌作用,可能是癌症治疗的潜在治疗剂。关键词:聚多巴胺纳米粒子,L-半胱氨酸,表柔比星,药代动力学,三阴性乳腺癌