摘要:最近在参考文献中讨论了可计算的交叉规范或重组(CCNR)。[1]作为在凝结物情况下的多部分纠缠的量度。在此简短说明中,我们指出它与(2,n)-Rényi反映的熵密切相关,该熵已在ADS/CFT的背景下进行了研究。我们讨论了随机张量网络和全息CFT中CCNR的计算。全息二重奏涉及由Rényi-2 Cosmic Branes产生的几何形状中的反反应纠缠楔形截面。我们在双曲线随机张量网络中进行两个间隔的显式计算,以及2D全息CFT的真空状态,并分析连接到截止性相位过渡的发生。该示例说明了对Rényi参数的任意值n的全息图的提议的有效性。我们对此数量的对称分解的概括进行评论。
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
摘要:平面电子系统在电荷中立和有限的电子密度上表现出丰富的相关驱动相的景观,具有异国情调的电磁和热力学响应。在本文中,以这些发展为动机,我们明确地将化学势的影响包括大约平坦的频带的全息模型。特别是,我们探讨了该全息扁平带系统的相图作为化学电位的函数。我们发现,在低温和密度下,该系统具有列相位,随着化学电位或温度的增加,该系统过渡到Lifshitz阶段。为了进一步表征随之而来的阶段,我们研究了光导率,并发现可观察到的可观察到在列相的各向异性。
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
摘要:数字全息显微镜(DHM)是一种广泛应用于生物、微电子和医学研究的3D成像技术。然而,3D成像过程中产生的噪声会影响医疗诊断的准确性。针对这一问题,提出了几种频域滤波算法。然而,所提出的滤波算法有一个局限性,即只有在直流(DC)频谱和边带之间的距离足够远时才能应用。针对这些限制,在提出的滤波算法中,HiVA算法和深度学习算法可以通过区分噪声和物体的详细信息来有效滤波,并且可用于实现与直流频谱和边带之间的距离无关的滤波。本文提出了一种深度学习技术与传统图像处理方法相结合的方法,旨在利用改进的去噪扩散概率模型(IDDPM)算法来降低3D轮廓成像中的噪声。
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关
[maldacena-nunez'00],在超弦理论中很难意识到它•二元CFT已知像负/假想的中心电荷一样是异国情调的•较高自旋全息
肖恩·哈特诺尔。高能物理学和凝聚态物理学围绕着对称破缺和重正化群等共同的基本概念展开,并共享费曼图和拓扑等核心数学机制。这导致了这两个领域之间历史上卓有成效的交汇。在过去的几十年里,出现了两个新的联系点。首先,全息对偶性已经证实,黑洞视界的经典演化精确地捕捉了物质强量子相的耗散动力学。近年来,这种联系已经超越了简单的相关函数(描述粗粒度热平衡方法),转向了更细微的可观测量,可以探测多体量子混沌的特征。与这种转变密切相关的是 Sachdev-Ye-Kitaev (SYK) 模型的出现。该模型具有成熟的全息理论的许多特征(和局限性),但在微观上更接近传统的凝聚态哈密顿量,并且受到更大的技术控制。其次,多体量子纠缠同时成为这两个领域的组织原则。看来,支持全息引力出现的量子态具有纠缠结构,可能类似于物质拓扑非平凡相的纠缠结构。充实这种联系有望成为未来进步的源泉。
通过研究量子全息物理和意识理论 (QHTC),我们可以更多地了解我们的现实是如何形成的,以及什么是非普通的意识状态。QHTC 认为意识不是局部的,改变的意识状态可以帮助我们以多种方式理解我们的思维是如何运作的。这就是薛定谔的想法。他认为量子力学波函数是意识的一个领域。QHTC 基于人类意识的全息理论。这些理论认为,大脑的工作原理就像全息图,它将图像处理成干涉图案,然后将其变成虚拟图像,就像激光全息图一样。这些量子波可以存储大量信息,我们的大脑利用这些信息来构建我们的三维世界。本文认为,最后一种理论应该是研究改变意识状态的主要框架,并讨论了如何获取数据进行分析以及如何进入改变状态以进行可能的实验。关键词:改变意识状态、量子理论、全息理论。 DOI 编号:10.14704/nq.2022.20.3.NQ22059 NeuroQuantology 2022;20(3):187-197 简介 David Bohm 和 Karl Pribram 率先使用全息理论来描述人类意识和认知。他们假设大脑的运作方式与全息图类似,遵循量子原理(Talbot 1991)。也就是说,大脑可能会将普通图像处理成干涉图案,然后将其转换为虚拟图像,类似于激光全息图的工作原理。这些量子波能够存储大量信息,我们的大脑利用这些信息来创建我们的三维现实(Pribram 1977,1999)。当他研究粒子现象时,他以完全不同的方式看待这个问题。他得出结论,这一切看起来如此奇怪的原因是,科学试图在橙子被剥皮后将其重新放回原位。