摘要 - 与循环微泡注射结合的经颅聚焦超声(FUS)是唯一的非侵入性技术,它在时间和局部局部打开了血脑屏障(BBB),使靶向的药物允许进入中枢神经系统(CNS)。但是,单元FUS技术不允许同时靶向具有高分辨率的几个大脑结构,并且需要多元素设备来补偿头骨引入的畸变。在这项工作中,我们介绍了声学全息图在小鼠的两个镜像区域进行双侧BBB开口的第一个临床前应用。该系统由一个以1.68 MHz工作的单元素集中的换能器组成,并与3D打印的声性全息图耦合,旨在在体内在麻醉的小鼠中产生两个对称焦点,同时构成了由骷髅头造成的波段差异。T1赢得的MR图像显示在两个对称的准球面斑点处的gadolinium散发。通过编码时间转换领域,全息图能够在小型临床动物头骨内部多个斑点的衍射极限附近以分辨率的分辨率聚焦的声能。这项工作证明了全息图辅助BBB开放对单独半球对称区域中中枢神经系统中的低成本和高度局部靶向药物递送的可行性。
微型全息图经常以金字塔形状用于展览。但对各种形状的全息图的研究却很少。本研究旨在了解反射浮动全息图技术应用的微型全息图的形状。通过分析浮动全息图类型,旨在验证反射型浮动全息图是否适合微型全息图的实现,并研究适合的非金字塔形状的反射微型全息图类型。除了经常用于展览的金字塔形全息图外,作者还研究了圆锥、半球和圆柱形全息图,并将它们形成垂直结构以支持显示图像的屏幕的扩展。反射型全息图在过去存在光散射问题,但通过在屏幕上附加偏振滤光片,光散射的影响被最小化。垂直型全息图会根据观看者的视角导致图像失真。将来,如果能够将图像失真最小化,就有可能实现扩展形状。关键词
到连续波(CW)HSR信号排除足够的有效穿透深度。确实是,hsr的基本物理学使用了CW信号,但不允许稍后放大(即更深的)到达有损培养基中(如脉冲地下雷达(ISR),HSR可能是可能的,但HSR具有不同的优势。其中最重要的是能够以ISR无法实现的分辨率进行较浅的地下成像。此外,由于相对较低的技术传输和接收触角,因此HSR系统的设计比ISR更简单。本文通过光学类比对HSR的主要原理进行了回顾,并描述了雷达全息图重建的可能算法。我们还介绍了Rascan类型的系统和应用的历史,这可能是唯一可商购的全息图地下雷达。在考虑的地下成像和遥感中,所考虑的是人道主义的脱落,建筑检查,对电介质航空航天材料的非破坏性测试,历史建筑和艺术品的调查,古生物学和安全筛查。用实验室和/或现场实验中获得的相关数据说明了每个应用程序。
如果 Σ i 中存在点 qi ,而 Σ j 中存在点 qj ,使得存在从 qi 到 qj ,或从 qj 到
摘要:将纳米磁性和旋转型扩展到三个维度(3D)为基本和技术研究提供了巨大的机会。然而,探测复合物3D几何形状对磁性现象的影响构成了重要的实验和理论挑战。在这项工作中,我们研究了使用Direct-Write纳米纳米化的铁磁3D纳米维克的磁电信号。由于电流和磁化的3D矢量性质,发生了几种磁电效应的复杂叠加。通过在3D磁场下进行电测量,结合了宏种模拟和有限的元素建模,我们删除了叠加的效果,从而构成了3D几何形状如何导致与众所周知的磁性磁性ectectects ectects的异常角度依赖性,例如一方面的依从性。至关重要的是,我们的分析还揭示了非共线性电磁场的强大作用,该场固有的3D纳米结构导致角度依赖的磁磁磁力强,对总磁电信号有很大贡献。这些发现是理解3D Spintronic系统的关键,并基于进一步的基本和基于设备的研究。关键字:磁转运,几何效应,3D纳米磁性,旋转型,3D纳米构型S
其中a(b)是普朗克单元中B的面积[1]。HP是由Bekenstein绑定在黑洞(BH)的热力学熵上的动机,传统上一直被束缚在绑定到的热力学熵,因此可以编码的经典信息,因此,一个独立的表面b,例如,一个独立的表面B,例如,伸展的地平线,BH [2,3];有关评论,请参见[1,4]。但是,我们也可以从更一般的角度看待(1),是信息几何的基本原理,将A(有限的)最小表面B与任何(有限的)熵S相关联,因此与任何经典的宽度s位渠道相关联。可以构建这样的通道,而不会损失一般性,如下所示:让u = ab为有限的,封闭的量子系统,假设可分离性,| ab⟩= | A | B⟩在任何关注的时间间隔内,并写下交互:
我们认为,在四维渐近性的量子重力理论中,可以从未来无效的未来无效范围内的无限端邻域获得所有有关无质量激发的信息,并且不需要未来所有的无效观察结果。此外,尽管相反不正确,但也可以从附近任何早期削减的观察值中获得有关未来无效的未来零事物的所有信息。我们为这两个断言提供了独立的论点。与过去无效的相似陈述相似。这些陈述对信息悖论具有直接的影响,因为它们表明该状态的细粒度von neumann熵定义在未来无效的一部分(-∞,u)上的段(-∞,u)与u独立于u。这与经常出现的页面曲线大不相同,有时该熵有时会服从。我们将结果与在黑洞蒸发的上下文中对页面曲线的最新讨论进行了对比,并讨论了我们的结果与其他全息含量侵蚀空间的关系的关系。
摘要。karolyhazy的不确定性关系指出,如果使用设备测量长度L,则测量中将有最小的不确定性δl,由(δl)3〜l 2 p l给出。这是结合量子力学原理和一般相对论的结果。在这封信中,我们表明了这种关系是如何以自下而上的方式,从时空 - 时间 - 物质原子的基质动力学来产生的。我们使用这种关系来定义Planck量表的空间 - 时间 - 物质(STM)泡沫,并认为我们的理论是全息的。通过比普朗克时间大的时间尺度上的粗粒子,获得了量子重力定律。量子重力不是普朗克量表现象;相反,每当经典时空背景都无法描述量子系统时,它就会发挥作用。空间时间和经典相对论是由高度纠缠的量子重力系统中的自发定位引起的。karolyhazy的关系继续存在于新兴理论中。这种关系的实验确认将构成重力量子性质的定义测试。
强相关是一般物质阶段的特性,因为即使是弱相互作用的材料也可以在某个参数区域中强烈相互作用。当将费米表面(FS)调节为小或设计为平坦时,就会发生这种情况。金属中的库仑相互作用很小,仅仅是因为电荷是由粒子孔对筛选的,颗粒孔对筛选,在FS较大时会产生丰富的电荷。实际上,任何狄拉克的材料都与fs靠近狄拉克锥的尖端密切相关。在清洁石墨烯[1,2]和拓扑绝缘子的表面[3-5]中证明了这一点,可以通过全息理论[6-8]定量解释。在扭曲的双层石墨烯[9,10]中,由于形成了一个称为Moire晶格的有效晶格系统,因此出现了平坦的带,该系统的尺寸比原始晶格大。简而言之,强烈的相关现象是普遍存在的,其中传统方法的运作不佳。因此,已经渴望了一种新方法。很难用其基本构建块来表征强相互作用的系统(SIS),并且一个问题如何简化系统以仅用几个参数制作明智的物理学。一种可能的是,由于损失的通用性,它们在量子关键点(QCP)变得很简单