Swift Navigation 精密 GNSS 接收器 mPCIe 模块 (PGM) 通过全球导航卫星系统 (GNSS) 定位和惯性传感器融合技术 (INS),在最恶劣的环境中实现低成本精密导航。该产品采用行业标准的“全”Mini PCI Express 模块外形设计,非常适合作为带有 mPCIe 扩展槽的嵌入式计算平台的附加组件,以及需要精密定位的应用,例如汽车、机器人、高精度数据收集、视频/传感器位置和图像时间标记。该模块专为主机应用处理器上的 Swift Navigation Starling® 定位引擎而设计,用于实时精密导航,具有双频 L1/L5 载波相位差分 GNSS RTK 和惯性/里程表传感器融合。
Swift Navigation 精密 GNSS 接收器 mPCIe 模块 (PGM) 通过全球导航卫星系统 (GNSS) 定位和惯性传感器融合技术 (INS),在最恶劣的环境中实现低成本精密导航。该产品采用行业标准的“全”Mini PCI Express 模块外形设计,非常适合作为带有 mini PCIe 扩展槽的嵌入式计算平台的附加组件,以及需要精密定位的应用,例如汽车、机器人、高精度数据收集、视频/传感器位置和图像时间标记。该卡专为主机应用处理器上的 Swift Navigation Starling 定位引擎而设计,用于实时精密导航,具有双频 L1/L5 载波相位差分 GNSS RTK 和惯性/里程表传感器融合。
随着全球导航卫星系统 (GNSS)、区域导航卫星系统 (RNSS) 和星基增强系统 (SBAS) 的进步推动定位、导航和授时 (PNT) 精度和弹性的提高,太空导航正在快速发展。GPS、GLONASS、伽利略和北斗等主要 GNSS 星座正在不断升级其系统,增加新功能,包括增强信号结构、卫星间链路和扩展服务。与此同时,QZSS 和 NavIC 等区域系统正在朝着更大的独立性和改进的功能发展。这些进步在卫星 PNT 系统易受干扰和欺骗的时代变得日益明显。同时,对替代 PNT 技术(例如低地球轨道 (LEO) 卫星系统和地面创新)的研究和开发正在获得动力,以确保提供可靠的导航服务。
联邦政府在 1164-1215 MHz 频段的空对地和空对空方向运行航空无线电导航和无线电导航卫星系统。在此频段运行的地基和机载系统控制国家空域 (NAS) 内的民用和军用飞机。测距设备 (DME) 系统及其军用版本战术空中导航 (TACAN) 系统在整个频段运行。全球导航卫星系统 (GNSS) 是在无线电导航卫星服务 (RNSS) 中运行的系统的标准通用术语,可提供具有全球覆盖的自主地理空间定位。在美国,此类系统被称为定位、导航和授时 (PNT) 系统。这些系统允许接收器使用卫星发射的信号确定其位置(经度、纬度和高度),并为全球众多用户提供精确的计时。国防部 (DoD) 在该频段协调运营一个通信系统,即联合战术信息分发系统 (JTIDS)。
摘要 — 本文阐述了传统的集中式架构如何过渡到分布式区域方法,以应对可扩展性、可靠性、性能和成本效益方面的挑战。本文研究了边缘计算和神经网络在实现自动驾驶汽车的复杂传感器融合和决策能力方面的作用。此外,本文还讨论了区域架构对车辆诊断、配电和智能电源管理系统的影响。本文介绍了实施有效区域架构的关键设计考虑因素,以及当前挑战和未来方向的概述。本文的目的是全面了解区域架构如何塑造汽车技术的未来,特别是在自动驾驶汽车和人工智能集成的背景下。索引术语 — 神经网络、集群、光检测和测距、全球导航和卫星系统、配电模块
原子干涉法是一种高度精确的惯性传感技术(Kasevich等,1991)。可以通过一系列激光脉冲询问免费的原子波包,可以提取有关加速度和转弯速率的信息,从而计算完整的导航解决方案(位置,速度和态度)。Applications of this technique for accelerometers (Barrett et al., 2014 ), gyroscopes (Gauguet et al., 2009 ; Schubert et al., 2021 ), and complete inertial measurement units (IMUs) (Gebbe et al., 2021 ; Gersemann et al., 2020 ) based on Bose–Einstein condensates are currently under research.惯性导航1小时后的潜在位置精度达到5 m(Jekeli,2005年),这使原子干涉法成为全球导航卫星系统(GNSS)遭受重复环境的高度有希望的技术。
摘要:卫星导航在众多不同的应用领域中越来越重要,从银行交易到航运,从自动驾驶到空中应用,如商用航空电子设备以及无人机 (UAV)。在非常精确的定位、导航和定时 (PNT) 应用中,例如在参考站和精确定时站中,重要的是表征系统中存在的所有误差,以便可能地解释它们或校准它们。天线在这方面发挥着重要作用:它们实际上是从全球导航卫星系统 (GNSS) 捕获空间信号的“传感器”,从而对整体可实现性能做出巨大贡献。本文回顾了目前可用的天线技术,专门针对参考站以及用于空间应用的精确 GNSS 天线,并在介绍性能指标后总结了当前可实现的性能。最后,确定了未解决的研究问题,并讨论了解决这些问题的可能方法。
摘要:卫星导航越来越重要,在众多非常不同的应用领域,从银行交易到运输,从自动驾驶到航空应用,例如商业航空电子产品以及无人驾驶飞机(无人机)。在非常精确的定位,导航和定时(PNT)应用程序中,例如在参考站和精确的计时站中,重要的是要表征系统中存在的所有错误,以便可能为其核算或校准它们。天线在这方面发挥了重要作用:它们确实是“传感器”,它从全球导航卫星系统(GNSS)中捕获空间中的信号,从而有助于总体实现的性能。本文回顾了当前可用的天线技术,针对特定的参考站以及用于空间应用的精确GNSS天线,并且在引入性能指标后,总结了当前可实现的性能。最后,确定开放研究问题,并讨论了解决这些问题的可能方法。
目前,大地测量学和地球物理学对地球重力场进行了一些研究。地球科学和空间研究也对重力研究感兴趣。大地水准面的势能与平均海平面的势能大致相同,是高度系统的主要基准,用于坐标转换、测量值减少、地下密度变化和类似的科学研究。目前的研究重点是确定厘米级大地水准面,以便有效使用全球导航卫星系统 (GNSS),例如土耳其的连续运行参考站 (CORS-TR/TUSAGA-Active)。本研究介绍了欧洲各地不同机构最近进行的天文大地测量观测的一般信息。此外,它还详细介绍了数据采集、仪器和处理技术,重点介绍了现代大地天文学中使用的观测原理和新技术。最后,本研究介绍了土耳其伊斯坦布尔使用的数字天顶相机系统 (DZCS) 的系统设计和首次观测结果。
众所周知,美国全球定位系统 (GPS) 等全球导航卫星系统 (GNSS) 的信号被用于美军所依赖的所有系统。然而,在美国与敌军交战的地区,GPS/GNSS 特别不可靠,因为干扰和欺骗对对手有利。我们提出了一种解决方案,该解决方案使用软件定义的接收器和先进的算法,利用低地球轨道 (LEO) 机会信号 (SOOP) 的到达时间差 (TDOA) 提供备用定位、导航和授时 (A-PNT)。在这种使用 LEO 信号的模式下,不需要对源信号有机密了解。事实上,不需要先验了解 LEO 轨道参数,也不需要知道信号的传输时间。该系统设计为独立工作,也可用于补充通常用于导航系统(包括 GNSS 和惯性导航)的现有导航传感器。扩展使用多个 LEO 星座将有助于优化 RF 挑战环境中的性能和弹性。