第 41 卷:宗教与组织理论 第 42 卷:组织转型与科学变革:机构重组对大学和知识创新的影响 第 43 卷:精英受审 第 44 卷:机构与理想:菲利普·塞尔兹尼克对组织研究的遗产 第 45 卷:走向比较制度主义:卫生与高等教育组织领域的形式、动力和逻辑 第 46 卷:压力下的大学 第 47 卷:组织中的工作结构 第 48A 卷:机构如何重要! 第 48B 卷:机构如何重要!第 49 卷:跨国公司与组织理论:后千禧年视角第 50 卷:出现第 51 卷:类别、分类和分类:社会学类别研究,组织和战略的十字路口第 52 卷:组织研究中的论证、评价和批评:法国实用主义社会学的贡献第 53 卷:组织网络的结构、内容和意义:扩展网络思维第 54A 卷:多模态、意义和机构第 54B 卷:多模态、意义和机构第 55 卷:社会运动、利益相关者和非市场战略第 56 卷:社会运动、利益相关者和非市场战略第 57 卷:走向组织的可渗透边界?第 58 卷:代理人、行动者、行动者身份:机构视角下的代理、行动和权威的本质 第 59 卷:管理知识和组织理论的生产:撰写、生产和消费理论的新方法 第 60 卷:种族、组织和组织过程 第 61 卷:行动中的常规动态 第 62 卷:思维基础设施 第 63 卷:市场道德争议 第 64 卷:管理组织间合作:过程观点 第 65A 卷:机构的微观基础 第 65B 卷:机构的微观基础
欧洲绿色协议旨在减少农药的使用,特别是开发生物防治产品以保护农作物免受疾病的影响。的确,使用显着量的化学物质对环境产生负面影响,例如土壤微生物生物多样性或地下水质量以及人类健康。葡萄藤(Vitis Vinifera)被选为第一个目标作物之一,因为其经济重要性及其对杀菌剂的依赖,以控制全球主要的破坏性疾病:灰色霉菌,柔软和白粉病。壳聚糖是一种从甲壳类外骨骼中提取的生物聚合物,在包括葡萄藤在内的许多植物物种中已被用作生物防治剂,以针对多种隐脂性疾病,例如唐尼霉菌(plasmopara viticola),粉状降落(elysiphe necator)和灰色霉菌(bilyea)和灰色霉菌(Brighodis)(byeaea)。但是,其作用方式的确切分子机制尚不清楚:它是直接的生物农药效应还是间接启发活性,还是两者兼而有之?在这项研究中,我们研究了六个具有不同程度的聚合(DP)(DP)的壳聚糖,范围从低到高DP(12、25、33、44、100和470)。我们通过评估其抗真菌特性及其诱导葡萄藤免疫反应的能力来仔细检查其生物学活性。为了研究其启发性活性,我们分析了它们诱导MAPK磷酸化的能力,防御基因的激活和葡萄藤中代谢物变化的能力。我们的结果表明,DP较低的壳聚糖在诱导葡萄的防御能力方面更有效,并且具有针对灰果芽孢杆菌和viticola的最强生物农药作用。我们用DP12将壳聚糖识别为最有效的抗性诱导剂。然后,在过去三年中进行的葡萄园试验中,壳聚糖DP12已针对柔软和白粉病进行了测试。获得的结果表明,当病原体接种量很低时,基于壳聚糖的生物防治产物可能会有效地有效,并且只能与两个
2.1 程序存储器 ROM(MTP) ......................................................................................................... 9 2.2 用户数据存储器( RAM ) ................................................................................................... 10 2.3 特殊寄存器( SFR ) ........................................................................................................... 11 2.4 CPU 内核常用 SFR ( PC/ACC/SP/IAP0/MP0/STATUS ) ................................................... 14 2.4.1 程序计数器 PC .............................................................................................................. 14 2.4.2 累加器 ACC .................................................................................................................. 14 2.4.3 堆栈指针 SP .................................................................................................................. 14 2.4.4 间接寻址寄存器 IAR0 、 MP0 ........................................................................................ 15 2.4.5 程序状态寄存器 STATUS ............................................................................................. 16
量子纠错领域的一个有趣问题是找到一个物理系统,该系统承载着“被动保护的量子存储器”,即与自然想要纠正错误的环境耦合的编码量子位。迄今为止,仅在四个或更高的空间维度中才知道量子存储器能够抵抗有限温度效应。在这里,我们采用不同的方法,通过依赖驱动耗散环境来实现稳定的量子存储器。我们提出了一个新模型,即光子-伊辛模型,它似乎可以被动地纠正二维中的位翻转和相位翻转错误:由光子“猫量子位”组成的方格,这些量子位通过耗散项耦合,倾向于局部修复错误。受两个不同的 Z 2 对称性破坏相的启发,我们的方案依靠类伊辛耗散器来防止位翻转,并依靠驱动耗散光子环境来防止相位翻转。我们还讨论了实现光子-伊辛模型的可能方法。
本文对用于提取电阻开关 (RS) 和建模参数的不同数值技术进行了修订。针对不同的电阻存储技术,计算了常用于估计可变性的置位和复位电压。还介绍了提取串联电阻的方法以及与电荷通量忆阻建模方法相关的参数。研究发现,获得的周期间 (C2C) 可变性取决于所使用的数值技术。这一结果很重要,它意味着在分析 C2C 可变性时,应描述提取技术以对不同的电阻存储技术进行公平比较。除了使用大量不同类型的电阻存储器的实验数据外,我们还采用了动力学蒙特卡罗 (kMC) 模拟来研究构成导电细丝 (CF) 的渗透路径的形成和断裂事件,这些细丝允许在丝状单极和双极器件中进行电阻开关操作。
摘要:在本文中,使用HSPICE模拟了使用能源有效GNRFET技术的物联网的静态噪声边距(SNM)和SRAM在不同电压供应和静态随机访问记忆的温度下的功耗。此外,已经提出了GNRFET SRAM的各种波形的模拟。SNM存在于SRAM细胞中,这会影响SRAM细胞的读取操作的稳定性。SRAM细胞稳定性分析是一个基于静态噪声边缘(SNM)的研究。在阅读操作过程中,SRAM细胞SNM分析了各种替代方案以提高细胞稳定性。GNRFET的作用提高了其功率效率和速度,在各种物联网应用中在航空工程中起着至关重要的作用。snm是6.7@1v,平均功率为2.24@1v,snm为2.43@45 o C,平均功率为1.25@45 o C.索引条款:GNR,GNRFET,功耗,电池消耗,细胞比率,CMOS,CMOS,PURPIP RATIO,SNM,SNM),Nano-Electronic。
光量子存储器及其在量子通信系统中的应用 马利军、Oliver Slattery 和唐晓 美国国家标准与技术研究所,马里兰州盖瑟斯堡 20899,美国 lijun.ma@nist.gov oliver.slattery@nist.gov xiao.tang@nist.gov 光量子存储器是一种可以存储光子的量子态并以高保真度按需检索的装置。它正在成为一种必不可少的设备,以提高通信、计算、计量等领域使用的许多量子系统的安全性、速度、可扩展性和性能。在本文中,我们将特别考虑光量子存储器对量子通信系统的影响。在概述光量子存储器的理论和实验研究进展之后,我们将概述其在量子通信中的作用,包括作为光子源、光子干涉、量子密钥分发(QKD)、量子隐形传态、量子中继器和量子网络。 关键词:量子通信;量子密钥分发;量子存储器;量子网络;量子中继器。接受日期:2019年12月9日 发表日期:2020年1月16日 https://doi.org/10.6028/jres.125.002 1. 引言 量子通信是一种利用信息载体(如单光子)的量子特性,实现双方量子信息交换的技术。该技术有许多独特的应用,是经典通信系统中不可能实现的。目前,量子通信有两种主要应用:量子密钥分发(QKD)和量子纠缠分发。
au:PleaseconfirmthatalleheadinglevelsarerepressedCorrectly:在2024年,所有生物学都是计算生物学。计算机辅助分析继续扩展到新领域,在湿实验室中受过培训的研究人员越来越渴望利用增长的数据集,成本下降和新颖的测定方法,这些试验会带来新的发现机会。目前,找到实施这些技术的指南要比报告其使用要容易得多,而生物学家可以猜测哪些详细信息和文件是相关的。在本文中,我们回顾了有关该主题的现有文献,总结了Common Tips,并链接到其他培训资源。遵循此概述,我们向共享代码提供了一组建议,以指导那些相对较新的人,以将开放科学原则应用于其计算工作。综上所述,我们为寻求遵循代码共享最佳实践但不确定从哪里开始的生物学家提供了指南。