结果:当在KA之前进行施用时,SKA-378(30mg/kg)并不能阻止癫痫持续状态(SE),但在3D后仍能阻止海马和其他边缘区域的神经损伤。在KA诱导的SE后1小时给予SKA-379,SKA-378,SKA-377,SKA-41或RILUZOLE时,也会减弱易受伤害的海马兴奋性(CA3/CA1)的神经损伤和抑制(HIRAR)神经元的神经元。对SKA-378和Riluzoles在体外运输阻滞的动力学分析表明,抑制是通过非竞争性的间接机制发生的。While sodium channel NaV1.6 antagonism blocks activity-regulated MeAIB transport and SKA- 378 is the most potent inhibitor of NaV1.6 (IC50=20µM) compared to NaV1.2 (IC50=118µM) in vitro , pharmacokinetic analysis suggests sodium channel blockade may not be the predominant mechanism of neuroprotection by these compounds in vivo .
在复杂环境中定位声源的能力对于通信和导航至关重要。空间听证会主要依赖于两只耳朵之间声音到达时间的差异的比较,即播出时间差异(ITD)。听力障碍对声音本地化非常有害。尽管人工耳蜗(CIS)成功地恢复了许多关键的听力能力,但通过ITD检测与双边顺式合理的定位仍然很差。根本原因尚不清楚。神经元,ITD敏感性是通过专门的脑干神经元进行的两只耳朵的兴奋性和抑制输入之间的巧合检测而产生的。由于在CI刺激过程中缺乏电生理学脑干记录,目前尚不清楚在多大程度上是由双耳比较神经元引起的,或者已经在输入水平上引起。在这里,我们使用自下而上的方法比较CI听力动物模型中电气和声学刺激之间的响应特征。在Gerbils中进行细胞外单神经元记录,我们发现在电脉冲刺激期间,兴奋性和抑制性脑干输入对双耳比较神经元的兴奋性和抑制性脑干输入中等高度渗透性。这一发现确定,双耳处理阶段必须应对CI刺激期间的输入统计量的高度变化。为了估计这些影响对ITD灵敏度的后果,我们使用了听觉脑干的计算模型。调整模型参数以使其响应特性与我们在任何一种刺激类型期间的生理数据相匹配时,该模型预测,即使对于超专有输入,也可以保持对电脉冲的敏感性。然而,与声学相比,该模型在电刺激过程中表现出严重改变的空间敏感性:
总和包括空间和时间求和,是确定兴奋性和抑制性信号的组合效应是否会从多个同时输入(空间求和)和重复输入(时间求和)(时间求发)触发的过程。取决于许多单独输入的总和,总和可能会或可能不会达到阈值电压以触发动作电位
摘要α1,3-羟基转移酶9(FUT9)负责Lewis X [Le X,Galβ1-4(FUCα1-3)Glcnac]碳水化合物表位的合成,这是多能或多元组织特异性干细胞的标记。尽管未缺乏的小鼠表现出与焦虑相关的行为,但大脑中的结构和细胞异常仍有待研究。在这项研究中,使用原位杂交和免疫组织化学技术结合使用,我们在大脑和视网膜中阐明了FUT9的时空表达以及Le X的时空表达。我们发现表达FUT9的细胞对CTIP2是阳性的,CTIP2是位于V/VI层中的神经元的标记,而TLE4是Cortex的VI层的皮质丘脑投影神经元(CTHPN)的标记。在胚胎日(E)11.5,5-溴-2--脱氧尿苷在E12.5时使用5-乙基甲尿尿苷(E),在e14.5处于E14.5的GFP表达质粒的子宫倍孔中,在E14.5降低了E1.5的VIIN中,E14.5在E14.5中,E14.5的gfp表达质粒的静脉外,E12.5的UTERO电穿孔中,E14.5在E14.5中均在E14.5中,在E14.5中,E14.5在E14.5中,E14.5在E14.5中,E14.5在E14.5中,在E14.5中, 。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。 此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。 这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。。 P0 FUT9 - / - 小鼠中的视网膜的神经节细胞层。此外,层VI/子板神经元的这种减少持续到成年期,导致CTIP2强/SATB2的数量减少 - 成人FUT9 - / - Cortex的V/VI中的兴奋性神经元。这些结果表明FUT9在皮质和视网膜中神经前体细胞的分化,迁移和成熟中起着重要作用。
摘要 配对联想刺激 (PAS) 已被用于人类,作为一种非侵入性工具来驱动可塑性并促进神经损伤后的恢复。需要更彻底地了解 PAS 诱导的可塑性,以充分利用它作为临床工具。在这里,我们在清醒大鼠模型中测试了具有多个刺激间隔的 PAS 的有效性,以研究联想可塑性的原理。通过在运动皮层和前肢长期植入电极,我们探索了 PAS 参数以有效驱动可塑性。我们使用闭环 EMG 控制的皮质刺激范式评估了皮质运动兴奋性的变化。我们测试了 11 个 PAS 间隔,选择这些间隔来强制大鼠运动皮层和脊髓中的神经元活动与与赫布尖峰时间依赖性可塑性原理相关的时间相一致。然而,尽管刺激配对数量相对较多(300),但没有一个测试间隔能够可靠地改变皮质脊髓兴奋性相对于控制条件。我们的研究结果对这些条件下 PAS 的有效性提出了质疑。
我的研究项目探讨了 hmx3a 在斑马鱼脊髓发育中的作用。hmx3a 是一个转录因子基因,这意味着它编码的转录因子蛋白能够结合 DNA 的特定区域,并通过促进或阻止 RNA 聚合酶将 DNA 转录成 mRNA 来促进或抑制其表达。之前的实验室研究已经证实,hmx3a 是斑马鱼脊髓中背部 dI2 中间神经元亚群正确分化所必需的。更具体地说,hmx3a 表达的降低或抑制与 dI2 细胞中神经递质的命运从兴奋性转变为抑制性有关。正常(野生型)dI2 细胞通过释放兴奋性/谷氨酸能化学神经递质进行通讯,这会增加接收细胞产生动作电位的可能性。而转换为抑制性神经递质表达(GABA 能或甘氨酸能)则会降低突触后细胞产生动作电位的可能性。由于神经递质表达的改变,我们预测 dI2 细胞不再在神经回路中正常发挥作用,这将对中枢神经系统内的感觉知觉产生重大影响。
在预能动作的背景下有效的抑制性控制至关重要。但是,这种行动抑制可能会受到情感状态的深刻影响。有趣的是,研究表明,情绪刺激可以损害或改善动作控制。因此,大量的混乱围绕着我们对复杂动态的知识来缩减情感和动作控制。在这里,我们旨在调查负面刺激即使无意识地提出和任务 - 毫无疑问,也可能影响相对于中性刺激的动作控制。此外,我们测试了皮质内兴奋性的个体差异是否可以预测动作控制能力。为了解决这些问题,我们要求参与者完成停止信号任务(SST)的修改版本,其中在GO信号作为素数之前,将恐惧或中性的刺激呈现。此外,我们评估了参与者的静止状态皮质脊髓兴奋性,较短的心脏抑制(SICI)和心脏内促进(ICF)。结果表明,当恐惧刺激被过度地呈现时,表现出更好的动作控制能力,并且个体间的SICI预测了更强的作用抑制能力。综上所述,这些结果对动作,意识和运动控制之间的复杂动力学有了新的启示,这表明心脏内测量可以用作潜在的研究和临床环境中运动抑制的潜在生物标志物。
CDKL5 基因突变是导致 CDKL5 缺乏症 (CDD) 的原因,这是一种罕见且严重的神经发育疾病,其特征是早发性癫痫、运动障碍、智力障碍和自闭症特征。CDD 的小鼠模型 Cdkl5 KO 小鼠重现了 CDD 症状的几个方面,有助于突出导致 CDD 神经缺陷的大脑改变。对成年 Cdkl5 KO 小鼠大脑形态发生的研究表明,锥体神经元的树突树枝化和突触连接存在缺陷,海马齿状回细胞减少,以及普遍的小胶质细胞过度激活。然而,目前还没有关于 Cdkl5 KO 幼崽是否存在这些大脑改变以及与成年期相比,这些改变在生命早期阶段的严重程度的研究。更深入地了解出生后早期发育阶段 CDKL5 缺陷大脑将成为进一步验证 CDD 小鼠模型和确定针对大脑发育缺陷的治疗最佳时间窗口的重要里程碑。鉴于此,我们对 7、14、21 和 60 天大的半合子 Cdkl5 KO 雄性 (−/Y) 小鼠的皮质锥体神经元的树突树枝化和棘、皮质兴奋性和抑制性连接、小胶质细胞活化以及海马齿状回颗粒细胞的增殖和存活进行了比较评估。我们发现 Cdkl5−/Y 大脑中的大多数结构改变在 7 天大的幼崽中已经存在,并且不会随着年龄的增长而恶化。相反,Cdkl5 − /Y 和野生型小鼠之间的兴奋性和抑制性终端密度差异会随着年龄而变化,表明存在与年龄相关的皮质兴奋性/抑制性突触失衡。Cdkl5 − /Y 幼崽的特点是新生儿感觉运动反射受损,这证实了大脑缺陷的早熟存在。
电压门控钾通道是导致细胞膜复制中钾外排出的钾通道的广泛分布的亚组,因此有助于作用电位的潜伏和传播。由于它们是突触传播的因果,因此对这些通道的结构的改变会导致各种神经系统和精神病。在大脑中的许多神经元上发现了电压门控钾通道的KV3亚家族,包括抑制性神经元,在这些神经元中有助于快速发射。这些中间神经元的发射能力的变化会导致抑制性和兴奋性神经传递的失衡。迄今为止,我们对兴奋性和抑制投入不平衡的机制几乎没有理解。这种不平衡与神经系统和神经精神疾病的认知缺陷有关,这些缺陷目前难以治疗。在这篇综述中,我们对支持以下假设的证据进行了整理,即电压门控钾通道,特别是KV3亚科是许多神经系统和精神疾病的核心,因此可以被视为有效的药物靶标。此处回顾的研究提供的集体证据表明,KV3通道可能适合调节这些通道活性的新型治疗方法,并有改善的患者预后。
动态微管严格调节突触功能,但是微管切断在这些过程中的作用几乎没有理解。katanin是一种神经表达的微管的复合物,可调节细胞分裂或神经发生的微管数和长度;但是,其在突触功能中的潜在作用尚不清楚。研究两性小鼠,我们发现Katanin在神经元树突中很丰富,可以在单个兴奋性脊柱突触中检测到。div> divant-dyant-aTPase降低的katanin亚基在功能上抑制切断,会改变树突中的微管的生长,在早产下,但不在成熟的神经元阶段,而不会影响脊柱密度。值得注意的是,对Katanin功能的干扰阻止了单次突触谷氨酸肠内突触后的结构脊柱重塑,并且显着影响了化学诱导长期增强后AMPA受体受体介导的兴奋性电流的增强。此外,Katanin抑制作用减少了微管的侵袭到完全发育的脊柱中。我们的数据表明,katanin介导的微管切断可调节突触部位的结构和功能可塑性。