抽象自闭症是一种神经发育状况,与大脑兴奋性(E)和抑制性(I)系统之间的总体失衡有关。这样的EI失衡会导致结构和功能性皮质偏差,从而改变大脑中的信息处理,最终导致自闭症特征。然而,尚未研究整个儿童和青春期的EI失衡的发展轨迹。因此,其与自闭症特征的关系尚不清楚。在本研究中,我们确定了EI平衡(F-EIB)的功能度量(F-EIB),从静止状态的电生理记录中,最终样本的92名自闭症儿童在6至17岁之间的最终样本和100个Allistist Allistist(即非自动主义)儿童(即按年龄,性别,性别和非Verbal-verbal-iq匹配)。我们将F-EIB的发展轨迹与自闭症特征的行为评估以及语言能力相关联。我们的结果表明,与同类儿童相比,自闭症的差异性EI伴随。重要的是,F-EIB价值观的发展轨迹与个人语言能力有关。特别是,在儿童晚期和青春期早期的兴奋性与听力理解的下降有关。我们的发现提供了反对自闭症儿童的普遍EI失衡的证据,纠正非语言智商。相反,我们表明,EI余额的发展轨迹与自闭症特征发展的差异在特定年龄范围内。这与抑制性脑活动的晚期发展是自闭症特征的关键基础的提议一致。
阿尔茨海默病 (AD) 中的神经元功能障碍和认知能力下降可能是由多种病理生理因素引起的。然而,人类的机制证据仍然很少,需要改进的非侵入性技术和综合模型。我们引入了个性化的 AD 计算模型,该模型建立在全脑 Wilson-Cowan 振荡器之上,并结合了来自 132 名 AD 患者的静息态功能 MRI、淀粉样蛋白-β (A β ) 和 tau-PET,以评估毒性蛋白质沉积对神经元活动的直接影响。这种针对特定主题的方法揭示了关键的病理机制相互作用,包括 A β 和 tau 对认知障碍的协同作用以及随着疾病进展而增加的神经元兴奋性。通过基于体素的形态测量,数据得出的神经元兴奋性值可以强烈预测临床相关的 AD 血浆生物标志物浓度 (p-tau217、p-tau231、p-tau181、GFAP) 和灰质萎缩。此外,重建的 EEG 代理量显示了标志性的 AD 电生理学改变(θ 波段活动增强和 alpha 波段减少),这种改变发生在 A β 阳性和边缘系统 tau 参与后。小胶质细胞激活对神经元活动的影响不太明确,这可能是由于神经成像在映射神经保护和有害激活表型方面的局限性。机械脑活动模型可以进一步阐明复杂的神经退行性过程并加速预防/治疗干预。
4.9过量服用过量,尤其是在肾功能受损的患者中,血液透析可以帮助消除体内头孢菌素。腹膜透析没有任何好处。发生了无意过量的过量(请参阅第4.2和4.4节)。过量的症状包括脑病(意识受损,包括混乱,幻觉,昏昏欲睡和昏迷),肌阵挛性癫痫发作和神经肌肉兴奋性(请参阅第4.8节)。5。药理学特性5.1药效特性药物治疗组:其他β-内酰胺抗生素,第四代头孢菌素; ATC代码:J01DE01行动方式
具有中心颞尖峰(选择)的自限性癫痫是儿童癫痫中最常见的局灶性综合征(1)。大多数选择的儿童都有良好的预后,但是少数比例可能会演变成癫痫性脑病,而睡眠中的尖峰和波动激活(EE-SWAS)。与EE-SWA相关的EEG模式被称为睡眠中的癫痫持续状态(ESE)(2)。慢波睡眠的几乎恒定的癫痫样活动通常伴随着认知或行为功能的显着回归。所有认知领域都可能受到影响,包括语言和交流,暂时空间方向,注意力和社会互动。然而,现有治疗方法的有效减少ESE患者的功能障碍的能力仍然非常有限。重复的经颅磁刺激(RTMS)作为一种局灶性,无创技术,在癫痫病领域具有治疗潜力(3)。低频RTM(≤1Hz)抑制皮质兴奋性,增加皮质无声时期的持续时间并减少运动诱发的潜在幅度(4)。使用低频RTM抑制癫痫发作的基本原理与有望中断突触潜力和局灶性皮质兴奋性的事实有关。现实世界的证据表明,使用Fure-8-coil的低频RTM可能是儿科患者药物耐药性癫痫的有效治疗,导致癫痫发作频率降低30%(5)。Ren等。 发现RTM是一种在选择患者中高度普遍的行为问题的新方法(6)。Ren等。发现RTM是一种在选择患者中高度普遍的行为问题的新方法(6)。尽管Cochrane审查发现RTMS在减少癫痫样排放方面是安全和有效的,但仍缺乏RTMS效率的证据,但仍缺乏癫痫发作的效率(7)。在选择中兴奋性和抑制性能(E-I不平衡)之间的不平衡已被确定为癫痫发作和认知障碍(8)。抑制网络涉及感觉运动和皮层网络,这表现为相应函数的解离。然而,RTMS对选择患者的E-I不平衡的影响尚不清楚。我们假设RTMS会降低选择中的癫痫发作频率和E-I不平衡。要解决我们的假设,需要满足两个要求:(1)RTMS后是否减少了癫痫发作频率和癫痫样放电以及(2)RTMS是否可以改善E-I不平衡。
神经元,大脑的构件,通过某些带电离子(例如钠,钾,钙,氯化物)在其细胞膜上的运动而产生的电信号相互通信。电信号由膜通道的选择性开放或闭合来控制,膜通道与神经元通路一起代表大脑的电路。离子通道基因中的突变可能会导致通道功能的损失或增长,而通道功能(通道病)在大脑发育过程中有助于正常神经元电路和神经发育障碍(NDD)的破坏,包括自闭症,发育迟缓,智力障碍,智力障碍和表情。这些疾病的标志是脑皮质中兴奋性或抑制性电活动的不平衡。在大多数情况下,多种因素会影响平衡,例如遗传表达,环境因素和复杂的补偿机制。不幸的是,通道病如何导致NDD的理解很少,并且基于临床病史的反复试验设计了数百万受影响的儿童的疗法,而不是基于特定儿童的理性干预措施。为了满足这种未满足的需求,我建议证明离子通道功能的改变如何影响在健康和疾病状态下经验观察到的脑运动皮层神经元的电活动。我将使用我的设计算法来模拟模拟实验数据的离子通道模型。开源软件将促进生物神经元网络的模拟,分析和优化。这样的计算工具提供了一个机会,可以检查NDD的潜在神经元机制,以及如何将靶向治疗转化为诊所,最终将兴奋性归还到神经型水平。将这种方法转换为钠通道的特定突变,我已经能够证明一名9岁患者的健康状况改善,该患者从每天癫痫发作五次癫痫发作到几乎没有癫痫发作。我的工作假设是,一个模拟大型皮质网络的模拟平台将使您可以检查广泛的通道病的影响是可能的。原则上,我将模拟人类原发性运动皮层,以模拟已知载体中离子通道基因突变产生的神经元放电模式如何影响皮质回路中单个神经元的内在兴奋性。反过来,我将迭代地调节不同离子通道的生物物理特性,以模拟已知药物的作用,这将使能够鉴定出新药物开发的靶标。如果我成功,这种方法将大大增加对NDD的了解,使儿科医生能够恢复适当的神经元功能,以减轻该疾病的症状并加速发现针对每个孩子病情量身定制的有效疗法。
癫痫是与状态癫痫症(SE)产生的明显脑损伤相关的神经系统疾病,包括神经变性,神经胶质性和异位神经发生。减少这些过程是一种有用的策略,可以改善最初侮辱后的恢复和改善负面结果。sgk1.1,血清和糖皮质激素调节的激酶1(SGK1)的神经元同工型(SGK1)已被证明会增加神经元的M-电流密度,从而降低兴奋性和防止癫痫发作。在这项研究中,我们使用了4-5个月大的男性转基因C57BL/6 J和FVB/NJ小鼠,其内源性启动子控制的激酶的组成型活性形式的生理水平接近。在这里我们表明,SGK1.1激活有效地降低了神经元死亡的水平(使用氟-jade C染色评估)和在高潮区域和皮层中的反应性神经胶质激活(由GFAP和IBA-1标记报告),即使在高含水率的情况下,Kainate诱导的72 H,在72 H中进行了72 h。这种神经保护作用不仅是通过M-电流激活而直接与通过TUNEL分析评估的凋亡水平降低以及通过海马蛋白提取物的Western印迹对BIM和BCL-X L的量化水平有关。我们的结果表明,这种新描述的SGK1.1激活的抗凋亡作用与细胞兴奋性的调节协同作用,从而显着减少与癫痫生成有关的区域中SE诱导的脑损伤。
kv7.2由KCNQ2基因编码的亚基构成了M-电流的关键分子成分,M-Current是一个亚阈值电压门控钾电流,通过抑制重复动作电位射击,可控制神经元兴奋性。自1998年以来,KCNQ2中的致病功能丧失变体与癫痫有关,并且有充分的功能证据表明该通道的功能障碍确实会导致神经元过度过度兴奋性。最近由于KCNQ2(KCNQ2-脑病)中有或没有癫痫发作的严重发育延迟的个体的最新描述表明,KV7.2通道在神经发育中也具有重要作用。kv7.2通道在发育中的大脑早期就已经表达了,当关键的发育过程(例如增殖,分化和突触发生)在脑形态发生和成熟中起着至关重要的作用。在这篇综述中,我们将讨论KV7.2渠道在这些神经发育过程中的作用的可用证据,尤其是针对源自KCNQ2相关的人类表型的见解,源自KV7.2的时空表达KV7.2和其他KV7家族成员,以及其他KV7家族成员,以及来自Cellular和Rodent和Rodent模型,以实施策略和研究策略,以实现临界模型和研究策略。最后,我们提出了一个模型,该模型在三个不同的发育阶段将M电流活性划分,与神经元发育中这些特定时期的细胞特征相关,以及如何将其与KCNQ2相关疾病联系起来。了解这些机制可以为KCNQ2-脑病的新靶向疗法创造机会。
癫痫的科学摘要药物治疗仍然非抑制作用,大约三分之一的患者在医学上是难治性的。有效疗法的开发需要新颖的实验系统来建模癫痫发育。一个非常有前途的新平台是人类脑器官(或简单的器官),即3D培养物,其中由人类胚胎或诱导多能干细胞(HESC或HIPSC)产生特定的脑样结构。类器官概括了人脑的许多结构特征,并为各种神经系统疾病提供了独特的见解。我们生成了“融合”器官结构,其中兴奋性神经元促进性皮层(CX)和抑制性神经元间的神经节启动(GE)种群整合了整合,从而产生了建模神经回路组装和癫痫发育的理想平台。使用这种技术,我发现hESC衍生的融合器可以在包括复杂振荡(复杂的振荡)中显示内神经元间调节的自发神经网络活动。我进行的单细胞RNA测序表明,融合对于中间神经元细胞的存活也至关重要,因为未使用的GE类器官显示出年龄增加的中间神经元簇的逐渐丧失,与融合不同。i还表明,来自RETT综合征患者的HIPSC衍生的融合器官,一种与癫痫高度相关的遗传疾病,具有癫痫样活性和网络振荡的变化,而网络振荡与同基因控制器可以改变。我通过用抗塞氏剂药物丙戊酸钠或p53抑制剂pifithrin-α治疗来挽救了其中一些异常。这些数据表明,融合器官模型增强了中间神经元的生存,体外概括了与癫痫相关的异常,并为治疗验证和发现提供了新的平台。基于这些数据和最新的初步发现,我建议扩展这种方法,以模拟大脑区域特定细胞变化以及严重发育和癫痫性脑病(DEE)的生理表型。i最近从SCN8A基因中具有癫痫相关突变的患者中产生了融合CX+GE和海马+GE(H+GE)类器官。scn8a编码电压门控钠通道Na V 1.6和SCN8A中功能突变的增益导致毁灭性的DEE,称为早期婴儿癫痫性癫痫性脑病13(EIEE13)。胎儿癫痫发作的报道使脑器官特别适合模型EIEE13。我的初步数据提出了高度过度过度的表型,其特征是SCN8A突变体CX+GE GE融合体中活机体两种光子成像和高振幅局部场电位(LFPS)的突发性。有趣的是,SCN8A突变体H+GE融合并没有显示出相同的过度表现表型,而是缺乏锋利的波浪波纹(SWR)振荡。SWR被认为是与海马记忆巩固相关的间神经元依赖性振荡。基于这些数据,我假设SCN8A突变体脑过度刺激性是由皮质兴奋性神经元驱动的,而海马中的SCN8A突变导致SWR振荡活性中的间神经元依赖性缺陷。目标1:确定scn8a突变体性过度刺激性表型中GE衍生的抑制性抑制作用与CX衍生的兴奋性神经元的作用。假设CX兴奋性神经元中SCN8A GOF突变引起的皮质兴奋性将通过对“未粘合”与“混合”融合的钙成像和LFP记录进行测试。在混合融合中,CX或GE将是SCN8A突变体,另一半将是无突出的。目标2:确定地球衍生的抑制性中间神经元在海马锋利波浪波动中的作用。假设SCN8A GOF突变仅限于GE衍生的中间神经元将足以消除H+GE融合器官中的SWR振荡,将通过在AIM 1。在利用新兴,有前途和人类细胞的技术来模拟癫痫病时,该提案有可能提供对癫痫病理生理学的开创性见解。此外,这些研究还集中在EIEE13的病理生理变化上,这与治疗癫痫的治疗任务一致。使用癫痫患者IPSC衍生的类器官,其潜力用于个性化和特定于患者的疾病建模,与以患者为中心的护理的治愈任务保持一致。
与疼痛相关的感觉输入在脊髓背角 (SDH) 中经过处理,然后传递到大脑。这种处理极大地影响了刺激是否被正确或错误地感知为疼痛。在识别组成 SDH 的兴奋性和抑制性神经元类型方面已经取得了重大进展,并且有一些关于神经元类型如何连接的信息,但尚不清楚整个回路如何处理感觉输入或这种处理在慢性疼痛条件下是如何被打乱的。为了探索 SDH 功能,我们开发了一个受实验数据严格约束的回路计算模型。我们的模型包括基于电导的神经元模型,这些模型可重现脊髓神经元的特征性放电模式。根据可用的定性数据,兴奋性和抑制性神经元群体通过其遗传标记表达、放电模式或形态进行突触连接。使用遗传算法,根据一系列机械刺激强度下的初级传入发放率(模型输入),调整突触权重以重现投射神经元发放率(模型输出)。不同的突触权重组合可以产生等效电路功能,揭示可能造成不同电路对扰动或病理损伤产生异质反应的退化。为了验证我们的模型,我们验证了它对抑制的减少(即去抑制)和特定神经元类型的消融的反应方式与实验一致。经过验证,我们的模型为解释实验结果和在计算机上测试假设提供了宝贵的资源,以计划用于检查正常和病理性 SDH 电路功能的实验。
慢性疼痛和饮酒障碍(AUD)是高度合并的,慢性疼痛的患者更有可能符合AUD的标准。证据表明,这两种情况都会改变类似的大脑途径,但这种关系仍然很少理解。先前的工作表明,前岛皮层(AIC)参与慢性疼痛和AUD。但是,疼痛和饮酒的组合引起的电路变化仍在研究中。这项工作的目的是阐明对饮酒和慢性疼痛对AIC神经元的融合作用,这些神经元将投影发送到背外侧纹状体(DLS)。在这里,我们使用了黑暗中的饮酒(DID)范式来模拟经历了不幸的神经损伤(SNI)的小鼠中类似暴饮暴食的饮酒,然后在急性脑切片中进行全细胞贴剂电池电学记录,以测量AIC→DLS神经元的固有性和突触特性。在雄性但不是雌性小鼠中,我们发现与假小鼠相比,没有先前酒精暴露的SNI小鼠消耗的酒精含量较低。电生理分析表明,来自SNI的AIC→DLS神经元 - 酒精雄性小鼠的神经元兴奋性增加,微型兴奋性突触后电流的频率增加。但是,与SNI后,与SNI相比,SNI之前暴露于酒精的小鼠消耗了类似的酒精。一起,我们的数据表明,慢性疼痛和饮酒的相互作用对小鼠的固有激励能力和突触传播都有直接影响,这对于了解慢性疼痛如何改变与酒精相关的动机行为可能至关重要。