摘要目前,全基因组测序(WGS)数据尚未显示与常用的β-LAC TAM/β-内酰胺酶抑制剂(BL/BLI)组合的大肠杆菌易感性概况:ampicillin-sulbactam(sam),amoxicil-lin-clavulavulanate(amclavulanate(amc)和pippirclin(ampicillin-sulbactam(sam)和pipperp)和pippober(ampicillin-sulbactam(sam)和pipeper),在没有头孢菌素耐药性的情况下,对这些BL/BLI的进行性抗性(也称为对BL/BLI(ESRI)的延伸谱耐药性)的渐进性主要主要是由于BLA TEM变体的拷贝数增加而引起的,而BLA TEM变体的拷贝数量增加,这在WGS数据中未经常评估。我们试图通过对147个大肠杆菌细菌分离株的WGS分析来提高基因扩增的添加是否可以改善基因型-pheno型关联,而BL/BLI的类别增加了非敏感性,范围从氨苄西林(AMP)(AMP)易感性到对所有三个BLIS的完全抗性。与BLA TEM在ESRI中的关键作用一致,至少具有至少氨苄西林的112/134菌株(84%)非敏感性编码的BLA TEM。在40/112(36%)菌株中存在BLA TEM扩增的证据(即Bla TEM基因拷贝数估计> 2×)。BLA TEM拷贝数与最小抑制浓度的AMC和TZP之间存在正相关(P <0.05),但对于SAM没有(P = 0.09)。在AMC和TZP-NON敏感性的aMC和TZP-NON敏感性中,β-内酰胺抗性机制的多样性(包括非CECF三脱三甲酮水解BLA CTX-M变体),BLA OXA-1,AMPC和BLA TEM强启动子突变更大。我们的研究表明,WGS数据(包括β-内酰胺酶编码基因扩增)的全面分析可以帮助用AMC或TZP非敏感性对大肠杆菌进行分类,但要辨别从SAM易感性到SAM使用遗传数据的SAM非敏感性的过渡。
由于管理机构制定的严格要求,许多制药公司不得不拆除建筑物或拆除生产 β-内酰胺时使用的设备。然而,美国制药行业与 ClorDiSys Solutions, Inc 共同完成的一项研究证实,二氧化氯气体能够灭活 β-内酰胺。测试包括九个灭活周期,其中五个通过了验收标准,即实现 8 种 β-内酰胺 3 个对数级的减少,低于美国食品药品监督管理局 (FDA) 要求的 0.03 ppm 残留检测水平。成功实现所有 8 种 β-内酰胺化合物 3 个对数级减少的灭活周期的累计暴露量均超过 7,240 ppm 小时。这些结果可以得出结论,要实现 β-内酰胺的 3 个对数级减少,需要一个灭活循环,包括在 75% 相对湿度下进行 30 分钟的调节阶段,然后暴露于至少 7,240 ppm-小时的二氧化氯气体中。二氧化氯会破坏 β-内酰胺环并使化合物失活,其方式与青霉素耐药菌的作用方式类似。
幽门螺杆菌(H. pylori)是一种革兰氏阴性、微需氧、螺旋状细菌,定植于人类胃粘膜(Malfertheiner et al., 2023),存在于全球超过 50% 人口的肠道中(García et al., 2014)。虽然感染通常无症状,但慢性感染可导致胃炎、胃溃疡、粘膜相关淋巴组织 (MALT) 淋巴瘤和胃腺癌(Diaconu et al., 2017;Kusters et al., 2006)。目前,H. pylori 感染的治疗多为质子泵抑制剂 (PPI) 与两种抗生素 (克拉霉素、甲硝唑或左氧氟沙星) 联合使用 (Lee 等,2022;Azrad 等,2022)。然而,许多流行病学研究表明,近年来 H. pylori 抗生素耐药率有所上升,影响了治疗效果 (Azrad 等,2022;Kuo 等,2017)。
I. 目的:剂量优化是临床成功治疗严重感染以及预防耐药性出现的必要组成部分。文献支持延长 β-内酰胺类抗生素的输注时间,以最大限度地发挥时间依赖性杀菌活性并提高达到目标的可能性。对于 β-内酰胺类药物,体外和动物研究表明,细菌杀灭效果的最佳预测指标是游离药物浓度超过生物体最低抑菌浓度 (MIC) 的持续时间 (fT>MIC)。1 本政策旨在通过全院实施延长 β-内酰胺输注,根据其药代动力学和药效学特性优化 β-内酰胺类药物的抗菌活性。
本技术报告重点介绍用于生产这些物质的发酵工艺,特别关注在其开发和制造中使用排除方法的情况。但是,在一份技术报告中评估市场上每种酶、微生物和酵母产品的发酵工艺以及允许和排除方法的潜在用途并不现实。相反,我们概述了发酵工艺以及用于生产这些材料的可能方式,包括允许和排除方法,并提供示例和注意事项。本报告末尾的附录表 4 中包含了酶、微生物和酵母的制造商和品牌名称的示例列表。此外,表 5 还包含酶及其用途、CAS RN 和 EC 识别号的列表。
超过十种构成天然和半合成产品的麦角生物碱用于治疗各种疾病1,2。中央C环形成了麦角生物碱的核心药效团,使它们与神经递质的结构相似,从而使它们能够调节神经递质受体3。Haem过氧化氢酶Chanoclavine合酶(EASC)通过复杂的自由基氧化环化4。与催化H 2 O 2催化5,6的规范过氧化氢酶不同,EASC及其同源物代表了更广泛的催化酶,可催化O 2依赖性自由基反应4,7。我们已经通过冷冻电子显微镜阐明了EASC的结构,揭示了烟酰胺腺苷二核苷酸磷酸磷酸磷酸(降低)(NADPH)(NADPH) - 结合口袋和所有Haem Catalases共同的山囊,据我们所知,所有独特的同型含量结构是唯一的同型结构,此前是唯一的同型结构。底物preganclavine在NADPH结合口袋中实现了前所未有的结合,而不是先前怀疑的出血口袋,并且通过细长的隧道连接了两个口袋。与既定机制相反,EASC使用超氧化物,而不是更普遍使用的短暂性血红素 - 氧复合物(例如化合物I,II和III)8,9,通过对两个远处袋的超氧化物介导的合作催化来介导底物转化。我们提出,这种活性氧机制可以在金属酶催化的反应中广泛。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。医疗总监有望行使临床判断,并在做出个人覆盖范围确定方面有酌处权。覆盖范围政策与健康福利计划的管理仅有关。覆盖范围政策不是治疗的建议,绝不应用作治疗指南。在某些市场中,可以使用授权的供应商指南来支持医疗必要性和其他承保范围的确定。
- MPS I型是由基因IDUA突变引起的常染色体隐性溶酶体储存障碍。它的特征是由于酶α-L-核苷酸酶的活性不足或活性不足,其溶酶体积累了硫酸乙酰肝素和皮肤硫酸盐的溶酶体积累。有三种主要的疾病变异:hurler,最严重的早期发作和神经认知能力回归,Hurler-Scheie,中间发作和严重性的形式,以及Scheie,Scheie是最温和的亚型。I型I型患者的体征,症状和严重程度差异很大。最常见的症状包括更严重的形式,脊髓脊髓压缩,角膜云,开态性倍增增生和瓣膜性增生和不足,腕骨型,腕管,腕管,腕管,短隧道和弱点/稳定性。- 美国医学遗传学学院2011年指南通过血清测定法证实了I型I型国家MPS I型,显示出α-L-二维罗苷酶活性的降低。一旦显示患者的酶活性降低,应进行基因检测,该测试应显示IDUA基因突变。两项测试必须证明疾病以确认诊断。- 酶替代(ERT)和干细胞移植(SCT)是MPS类型I的唯一治疗选择。Aldurazyme是MPS I型的唯一FDA批准的酶替代疗法。它被批准为I型MPS的成人和小儿患者以及患有中度至重度症状的Scheie形式的患者。ert应该根据治疗医师的判断开始,并可以在温和的疾病中持续到更重要的临床情况。如果发现患者患有严重疾病或有神经认知能力下降的风险,则应评估他们的SCT。
在这里,我们展示了一种策略,以合理地编程toehold介导的DNA链置换反应的延迟发作。该方法基于阻断链,通过与靶DNA的toehold结构域结合来有效抑制链位移。特定的阻滞剂链的酶促降解随后实现了链位移反应。阻滞剂酶促降解的动力学控制了链位移反应开始的时间。通过改变阻滞剂链的浓度和酶的浓度,我们表明我们可以很好地调整并调节链位移反应的延迟开始。另外,我们表明该策略是用途广泛的,可以通过不同的酶正交控制每个酶,每个酶都专门针对不同的阻滞剂链。我们使用RNase H以及两个DNA修复酶FPG和UDG以及相应的阻滞剂设计并建立了三个不同的延迟链位移反应。可以使用动力学建模可以方便地预测所达到的时间延迟,而无需不需要泄漏,可以通过高灵活性进行编程。最后,我们表明,延迟的链位移反应可以耦合到下游过程,并用于控制从DNA纳米电视中的配体释放以及DNA Aptamer抑制蛋白质。