•希望用更好的总体“系统”•现有的系统研究•现有的CHW效率超过2.0 kW/ton(包括所有冷水机,泵等)•部分是由于冷却器和泵的转折以匹配负载•同时,仔细观察负载:•并非所有过程都需要水:38-44 O F•某些过程需要简单的水:70 O F
摘要。我们报告了调整詹姆斯·韦伯太空望远镜(JWST)设计的调查,满足了Origins太空望远镜的需求和要求。引入并详细介绍了JWST设计的设备和JWST设计的绝缘材料所需的修改和隔热。Webb热模型被修改为原始设计,并用于预测18和4.5 K的热载荷。我们还描述了JWST中红外仪器的冷冻仪所需的开发,以达到原始温度所需的温度。讨论了各种修改的冷冻机的功能。我们表明需要三个修改的冷却器来实现起源所需的性能。最后,我们证明可以在韦伯体系结构中容纳基线仪器和所需的冷却器以获得数量,质量和功率。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.1 .011006]
目前已在太空中部署和开发未来部署的各种航空航天冷冻冷却器设计所证明的,可变的有效负载要求促使人们需要广泛选择的冷冻冷却器类型和尺寸。反向Brayton,Stirling,Pulse Tube和Joule-Thomson是最常见的类型,以及这些类型的混合组合,例如Cryocoolers的Raytheon Stirling / Pulse Tube Tage(RSP2)系列。这些类型中的每一种都体现了其独特的优势,其相关性和重要性是有效载荷依赖的功能。工作温度,热负荷,制冷阶段的数量,有效载荷物理配置和最大允许的发射振动是关键有效负载要求的示例,可驱动选择最佳冷冻机类型和大小的选择。另一个关键因素是采购成本,特别是对于需要低温制冷的新兴类别的“响应空间”红外传感器。本文讨论了各种冷冻机类型的优势和劣势,以及如何将这些特性与用户在有效载荷要求上的最大优势保持一致。
6 EarthWise Systems 水侧:蒸发器温差为 12°F,冷凝器温差为 15°F,高效冷却器。空气侧:设计送风温度为 48°F,区域冷却设定点为 76°F(由于送风温度较低导致室内相对湿度较低,根据 ASHRAE 冷风系统设计指南定义室内舒适度),温和室外条件下送风温度重置(从 48°F 到 60°F),比较焓节能器,并联风扇驱动的 VAV 终端,优化送风管道静压控制(风扇压力优化)。7 传统系统水侧:蒸发器温差为 10°F,冷凝器温差为 10°F,最低 ASHRAE 90.1 冷却器效率。空气侧:55°F 设计送风温度、75°F 区域冷却设定点、固定干球节能器、带再热端子的 VAV、固定送风管道静压控制。
• 冰箱温度保持在 +2°C 至 +8°C 之间,每天记录两次温度。 • 所有超出 +2°C 至 +8°C 的温度超标(如适用)均已报告给 EOHU,并且诊所已实施了有关受影响疫苗使用的建议。 • 制定了应急计划,以应对断电和/或冷链事故,包括疫苗冷却器和额外的温度监测设备。
斯拉。编号 当前项目清单 备注/建议 1 AAAC 导线,最多 37 股 农具 2 手动和电动工具和器具 3 动物驱动器具 4 空气/室内冷却器/沙漠冷却器 建筑五金 5 铝材料 6 MS 材料 7 SS 材料 8 黄铜 9 UPVC-塑料部分 10 救护车担架 11 安培计/欧姆表/电压表/万用表/兆欧表/瓦特表 12 卡其色脚链网 13 所有类型的手动工具,包括 DIY 套件 14 汽车前灯组件 15 刺绣徽章布和金属 所有类型的包 16 皮包 17 棉布袋 18 帆布袋 19 黄麻袋 20 工具包 21 邮袋 22 睡袋 23 防水袋 24 椰壳纤维袋 25 绷带布 26 带刺铁丝网,包括手风琴、金属冲孔胶带,其他铁丝网及配件 27 篮子藤条(也可以从国家森林公司和国家手工艺品公司采购)
缩写:AC,吸收冷却器; CHP,热量和功率组合; CCHP,冷却热量和功率组合; EC,电动冷却器; EES,电源存储; CTE,冷热能源存储; MILP,混合整数线性编程; PE,初级能量; PV,光伏系统; Res,可再生能源;亮点:•使用计算能源集线器的能源系统设计的MILP模型。•分析了碳定价和天然气价格波动的影响。•高碳定价和TE可以促进分布式CCHP系统的部署。•天然气供应价格下跌可能会损害碳定价的有效性。•CO 2排放量与CCHP系统使用的便利性有关。关键字:分布式能源系统;碳税;最佳计划储能;能源集线器设计摘要:几个政府正在实施碳定价,以遏制CO 2排放。这项工作研究了其对分布式能源系统设计的影响,该设计由可再生和化石燃料提供动力。特别是,分析研究了一个位于新加坡的真实案例研究,其特征是冷却和电力需求。
地球表面温度≈300 K的陆地辐射集中在2.5至50 µm的波长范围内。同时,各种大气成分的综合作用,形成了8至13 µm之间的特殊大气窗口,该窗口高度透明。因此,大多数陆地区域可以通过透明的大气窗口有效地将热量辐射到寒冷的宇宙中,以维持相对稳定的温度。为此,辐射冷却器应在透明大气窗口(8–13 µm)内具有高的发射率,在该区域是透明的,并允许红外光通过。在这方面,过去几十年来人们设计了各种材料和结构,并在夜间表现出良好的被动冷却性能。 [8,9] 然而,在白天,太阳会加热辐射冷却器,这严重影响了冷却效果。为了解决这个问题,冷却器应该在反射阳光以避免太阳加热的同时,向寒冷的宇宙辐射更多的热量。Fan 等人 [10] 首次设计了多层光子材料,并在阳光直射下实现了白天辐射冷却,温度低于环境温度。此后,各种材料已被证明可以实现低于环境温度的白天辐射冷却,并显示出巨大的实际应用潜力。[11–13] 之前一些综述总结了辐射冷却方面的这些发展,[14–17] 但辐射冷却的净冷却功率有限和不稳定性阻碍了其实际广泛应用。在这篇综述中,通过总结被动式白天辐射冷却 (PDRC) 的最新研究和发展,我们首先提出了 PDRC 的三个关键组成部分:1)中红外范围的光谱设计,2)增强太阳反射率的结构设计,和 3)热管理。其次,我们介绍了PDRC的各种应用,例如建筑冷却、太阳能电池冷却、水收集、服装和发电(图1)。最后,我们还讨论了PDRC的剩余挑战和机遇。
图1:我们提出了Khronos,这是一种在动态环境中执行指标同时映射和定位(SLAM)时,是一种统一的推理方法,以推理短期动态和长期变化。上面显示了始终代表场景状态的Khronos时空图中的一些实例。短期动力学(左)显示在洋红色中,并与相应时间间隔内观察到的人类作用进行了比较。我们显示了检测到的移动点以及质心轨迹周围的电流和初始边界框。检测到人类和无生命的物体(例如购物车(左下))。长期更改(右)显示了同一场景的三个时间实例。最早的实例是时间0:20(右上角)。机器人在走廊上移动时,卸下椅子,并将红色冷却器放在桌子的顶部;这些更改被检测到机器人重新访问,并在时间1:52(右下)关闭循环。最后,再次将冷却器卸下,该机器人在时间3:35检测到。
Breezair 的无堵塞水分配是其独特之处之一。水分配器通过在冷却垫上提供连续且平衡的水流来最大限度地提高冷却效率。这与任何其他品牌的蒸发冷却器都不同,后者会因多种原因而受到水流变化的影响。Breezair 的平衡流量可确保最高的蒸发效率和最大的冷却效果。