安全有效疫苗的快速研发是 SARS-CoV-2 大流行的重大成就,可能已在全球范围内防止了数百万人的死亡 [1,2]。然而,使用疫苗强制令作为鼓励接种疫苗的一种手段引起了争议,反对者认为,工作、上学或旅行的疫苗接种要求是对个人权利的不合理限制 [3]。我们之前使用了一个简单的疾病传播和疫苗效果数学模型以及非随机人群混合来探索疫苗接种以及接种疫苗和未接种疫苗人群之间的不同混合模式将如何影响每个亚人群的风险和疾病动态 [4]。在这项工作中,我们创建了一个指标,以衡量在疫苗不完善的情况下,未接种疫苗的亚人群的感染对接种疫苗人群风险的不成比例的影响 [4]。我们发现,即使接种了效力较低的疫苗(VE 约 40%),在所有关于两组混合的假设下,未接种疫苗的人群的感染风险明显高于接种疫苗的人群[4]。我们还发现,经接触调整后,未接种疫苗的人群对感染风险的贡献是不成比例的,未接种疫苗的人群对接种疫苗人群感染的贡献率高于仅基于接触人数所预期的比率[4]。最后,我们发现,随着同类混合的增加(接种疫苗和未接种疫苗的人优先与具有相似疫苗接种状况的人互动),接种疫苗的人群的发病率下降,未接种疫苗的人群的发病率上升,但经接触调整后,接种疫苗的人群与未接种疫苗的人群接触对风险的贡献增加[4]。由此我们得出这样的结论:虽然在致命性疫情期间避免接种疫苗的风险主要由未接种疫苗的人群承担,但他们的选择对接种疫苗人群的病毒感染风险的影响,与未接种疫苗的人群比例不成比例。因此,该模型暗中支持使用疫苗强制令。我们的研究成果遭到了一些批评,有些是科学性的,有些则可以说是意识形态性的。我们在一篇发表的回应中回应了科学批评[5]。大多数批评集中在与奥密克戎变种出现相关的疫苗效力下降、我们在发表的模型中假设接种疫苗会产生持久免疫力,以及认为仅给未接种疫苗的人提供20%的基线免疫力的“先发优势”是不够的。关于疫苗效力[6-8]、持久性的信息不断发展
利什曼病是由利什曼原虫属的原生动物寄生虫引起的媒介传播疾病,是一种复杂的疾病,主要影响世界上热带地区。不幸的是,尽管付出了广泛的努力,但没有可供人类使用的疫苗。无疑,对宿主 - 载体 - 寄生虫相互作用的全面了解对于开发有效的预防性疫苗是重要的。最近已经发现了沙蝇唾液在疾病进展中的作用,这可以在疫苗设计中做出重大贡献。在这篇综述中,我们试图关注最有可能符合疫苗开发先决条件的策略(基于当前的理解),包括活着的衰减/非致病性和亚基DNA疫苗。创新的方法,例如反向遗传学,酥脆/R-CAS9和无抗生素选择,可以有效地弥补与这些平台相关的固有缺陷。我们的主要目标是在控制疾病的同时更加注意有效疫苗开发的先决条件是巨大的需求。
1 1,菲萨尔大学国王大学生物科学系,al-ahsa 31982,沙特阿拉伯2核医学系2号科威特大学医学院,科威特大学,萨夫特13110,科威特3实验室3实验室,芳香和药用工厂的实验室菲萨尔大学国王大学医学院生物医学科学系,Al-Ahsa,31982,沙特阿拉伯5号,萨维萨牙科学院和医院生物化学系,Saveetha医学和技术科学研究所,钦奈600077,泰米尔纳德邦,印度泰米尔纳德州600077,印度泰米尔纳德,阿列克萨德,埃克斯特,艾克斯特,艾克斯特。埃及7分子生理学实验室,动物学系,科学系,阿西大学,阿西大学71515,埃及 *平等贡献1,菲萨尔大学国王大学生物科学系,al-ahsa 31982,沙特阿拉伯2核医学系2号科威特大学医学院,科威特大学,萨夫特13110,科威特3实验室3实验室,芳香和药用工厂的实验室菲萨尔大学国王大学医学院生物医学科学系,Al-Ahsa,31982,沙特阿拉伯5号,萨维萨牙科学院和医院生物化学系,Saveetha医学和技术科学研究所,钦奈600077,泰米尔纳德邦,印度泰米尔纳德州600077,印度泰米尔纳德,阿列克萨德,埃克斯特,艾克斯特,艾克斯特。埃及7分子生理学实验室,动物学系,科学系,阿西大学,阿西大学71515,埃及 *平等贡献
1 PharmD计划,药学学院,国王沙特大学,里亚德11451,沙特阿拉伯; shathamajed4@gmail.com(s.m.a. ); rahaf11301@gmail.com(R.M.A。 ); 441200367@student.ksu.edu.sa(r.r.a. ); 441200476@student.ksu.edu.sa(l.a.a. ); 442200723@student.ksu.edu.sa(D.H.A. ); 441200489@student.ksu.edu.sa(s.e.a.-a. ); 441200322@student.ksu.edu.sa(s.o.a. ); 439201033@student.ksu.edu.sa(r.a.a.) 2药理学和毒理学系,沙特国王大学药学学院,里亚德11451,沙特阿拉伯; aaloneazi@ksu.edu.sa(a.s.a. ); nalrasheed@ksu.edu.sa(N.M.A。 ); mahaali@ksu.edu.sa(M.A.A。 ); talshammary@ksu.edu.sa(t.k.a. ); abindayel@ksu.edu.sa(A.F.B.D. ); naldamri@ksu.edu.sa(N.T.A。 ); halghibiwi@ksu.edu.sa(H.K.A. ); dalkhelb@ksu.edu.sa(d.a.a.) 3沙特国王大学理学院动物学系,里亚德11451,沙特阿拉伯; elnagard1@yahoo.com 4动物学系,埃及艾因·沙姆斯大学女士,埃及11566 *通信:nrasheed@ksu.edu.edu.sa;电话。 : +966-1180506821 PharmD计划,药学学院,国王沙特大学,里亚德11451,沙特阿拉伯; shathamajed4@gmail.com(s.m.a.); rahaf11301@gmail.com(R.M.A。); 441200367@student.ksu.edu.sa(r.r.a.); 441200476@student.ksu.edu.sa(l.a.a.); 442200723@student.ksu.edu.sa(D.H.A.); 441200489@student.ksu.edu.sa(s.e.a.-a.); 441200322@student.ksu.edu.sa(s.o.a.); 439201033@student.ksu.edu.sa(r.a.a.)2药理学和毒理学系,沙特国王大学药学学院,里亚德11451,沙特阿拉伯; aaloneazi@ksu.edu.sa(a.s.a. ); nalrasheed@ksu.edu.sa(N.M.A。 ); mahaali@ksu.edu.sa(M.A.A。 ); talshammary@ksu.edu.sa(t.k.a. ); abindayel@ksu.edu.sa(A.F.B.D. ); naldamri@ksu.edu.sa(N.T.A。 ); halghibiwi@ksu.edu.sa(H.K.A. ); dalkhelb@ksu.edu.sa(d.a.a.) 3沙特国王大学理学院动物学系,里亚德11451,沙特阿拉伯; elnagard1@yahoo.com 4动物学系,埃及艾因·沙姆斯大学女士,埃及11566 *通信:nrasheed@ksu.edu.edu.sa;电话。 : +966-1180506822药理学和毒理学系,沙特国王大学药学学院,里亚德11451,沙特阿拉伯; aaloneazi@ksu.edu.sa(a.s.a.); nalrasheed@ksu.edu.sa(N.M.A。); mahaali@ksu.edu.sa(M.A.A。); talshammary@ksu.edu.sa(t.k.a.); abindayel@ksu.edu.sa(A.F.B.D.); naldamri@ksu.edu.sa(N.T.A。); halghibiwi@ksu.edu.sa(H.K.A.); dalkhelb@ksu.edu.sa(d.a.a.)3沙特国王大学理学院动物学系,里亚德11451,沙特阿拉伯; elnagard1@yahoo.com 4动物学系,埃及艾因·沙姆斯大学女士,埃及11566 *通信:nrasheed@ksu.edu.edu.sa;电话。: +966-118050682
引言肠道微生物群调节系统性免疫并影响人类健康的许多方面(1)。最近的工作已经确立了多种人类疾病中调节性肠道菌群的因果作用,并证明肠道菌群是可遗传的,是由环境暴露塑造的,并且是免疫细胞动力学的关键修饰剂(2,3)。除了未知因子外,这些作用被认为主要是通过已知的机制(例如改变先天免疫细胞,改变的炎症细胞因子反应和重新编程的适应性免疫)来实现的(4-6)。关键研究已经确定了肠道微生物群在调节肺部对感染的反应中的作用,而肠道菌群是确定肺损伤中髓样细胞池和肺白细胞积累的关键变量(7,8)。最近在急性肺损伤模型中的工作是有争议的,既支持肠道微生物或肺微生物群的因果作用,又在修改实验结果中起着因果作用(6,9-11)。肺纤维化是一种慢性进行性肺部疾病,是由急性肺损伤后遗症引起的,通常导致死亡(12)。肺纤维化的发病机理良好,不存在治愈,并且当前的疗法不会逆转或阻止肺纤维化(12)。需要一个新的范式来了解这种异源疾病。先前的工作已经确定了肺微生物在肺纤维化的发病机理中的作用,据报道肺微生物群,肺泡免疫,炎症,炎症和临床结局之间的相关性在肺纤维化患者中(9,13,14)。这支持纤维化肺中宿主免疫和粘膜微生物群之间的关键相互作用。我们和其他人已经确定失调的肺免疫是进行性肺纤维化的关键因素(15-18)。肠道微生物群是肺免疫的完善调节剂。但是,肠道微生物组在肺纤维化中的作用知之甚少。建立肠道菌群与疾病之间的因果关系是具有挑战性的。以前的工作已经证明了供应商特异性的共生微生物群在产生独特的免疫特征
个人如何从正面和负面的奖励反馈中学习并据此做出决策,可以通过强化学习的计算模型形式化(Sutton and Barto 1998)。RL 模型的核心是奖励预测误差 (RPE),它反映了已实现奖励和预期奖励之间的差异。从神经上讲,预测误差由中脑多巴胺的阶段性释放发出信号(Hollerman and Schultz 1998,Schultz 2013),同时纹状体和其他大脑区域的神经活动也相应出现(Pine, Sadeh et al. 2018)。人类功能性神经影像学研究报告了中脑、纹状体和几个皮质区域中 RPE 的相关性(O'Doherty, Dayan et al. 2004,D'Ardenne, McClure et al. 2008,Daw, Gershman et al. 2011,Deserno, Huys et al. 2015)。 RL 神经行为相关性的个体差异确实与人类多种多巴胺测量方法有关,包括药理学操作(Pessiglione、Seymour 等人 2006 年、Westbrook、van den Bosch 等人 2020 年、Deserno、Moran 等人 2021 年)、神经化学正电子发射断层扫描 (PET)(Deserno、Huys 等人 2015 年、Westbrook、van den Bosch 等人 2020 年、Calabro、Montez 等人 2023 年)和特定基因型(Frank、Moustafa 等人 2007 年、Dreher、Kohn 等人 2009 年)。
nipah病毒(NIV)是一种高度致病的人畜共患病毒,会引起严重的脑炎和呼吸系统疾病,人类死亡率高(> 40%)。在各种果蝙蝠物种上的流行病学研究是该病毒的天然储层,已表明NIV广泛分布在整个东南亚。因此,迫切需要开发有效的NIV疫苗。在这项研究中,我们使用LC16M8菌株产生了表达NIV糖蛋白(G)或融合(F)蛋白的重组疫苗病毒,并检查了其抗原性和诱导免疫力的能力。中和对NIV的中和抗体被成功诱导的LC16M8表达NIV G或F的仓鼠,并且抗体滴度高于预见的其他疫苗病毒载体诱导的抗体滴度,以防止致命NIV感染。这些发现表明,与其他基于Poxvirus的疫苗相比,基于LC16M8的疫苗格式作为增殖疫苗具有优越性。此外,在仓鼠三轮疫苗接种期间收集的数据为抗体升高过程中收集的数据为临床使用基于疫苗的病毒疫苗针对NIV疾病提供了重要的基础。试用注册:NCT05398796。
摘要:核苷酸结合结构域和富含亮氨酸的重复(NLR)蛋白可以参与25种复杂的相互作用,以检测病原体并通过下游辅助助手NLR执行强大的免疫反应。然而,上游传感器NLR激活辅助NLR的生化机制仍然鲜为人知。在这里,我们表明,盘绕的螺旋辅助辅助辅助NLR NRC2在体内积聚,作为一种同型二聚体,其在其上游病毒抗病蛋白RX激活后将其转化为高级低聚物。NRC2在其静止30个状态下的冷冻EM结构揭示了介导同二聚体形成的分子间相互作用。这些二聚化接口在寄生虫NRC蛋白之间有所不同,以使关键网络节点隔离并实现冗余免疫途径。我们的结果扩大了NLR激活指向从同二聚体到高阶寡聚抗性体的过渡的分子机制。
内源性大麻素(Ecbome)是扩展的内源性大麻素系统(ECS),研究表明,该系统与该系统如何调节酒精诱导的神经蛋白流量之间存在联系。使用有条件的敲除(CKO)小鼠在多巴胺神经元(DAT-CNR2)中选择性缺失2型2型受体(CB2RS)和小胶质细胞(CX3CR1-CNR2)中,我们研究了CB2RS如何调节行为和神经蛋白毒素诱导的cb2RS。的行为测试,包括运动和车轮跑活动,旋转rod性能测试以及酒精偏好测试,用于评估酒精诱导的行为变化。使用ELISA分析,我们研究了促炎细胞因子,肿瘤坏死因子-α(TNF-α),白介素-6(IL-6),白介素-1α(IL-1α)(IL-1α)和脑粒属1β(IL-1β(IL-1β)的水平。发现表明运动活性,车轮运行和旋转性性能活动受到多巴胺神经元和小胶质细胞中CB2RS的细胞类型缺失的显着影响。非选择性CB2R激动剂Win 55,212-2,野生型和细胞类型的CB2R CKO小鼠的酒精偏好降低。此外,结果表明,CB2RS本身的细胞类型的特异性缺失,并将酒精施用至CB2R CKO小鼠增加了海马中促炎性细胞因子的表达。这些发现表明CB2RS参与了调节酒精引起的行为和免疫改变。
1 南非约翰内斯堡威特沃特斯兰德大学病理学院 SA MRC 抗体免疫研究组,2 南非约翰内斯堡国家卫生实验室服务国家传染病研究所 HIV 和 STI 中心,3 开普敦大学传染病和分子医学研究所,南非天文台,4 开普敦大学病理学系医学病毒学分部,南非天文台,5 开普敦大学医学系及 Groote Schuur 医院,南非天文台,6 开普敦大学健康科学学院开普心脏研究所;南非天文台,7 南非医学研究委员会非传染性疾病与传染病交叉研究外部单位,开普敦大学,开普敦,南非,8 南非医学研究委员会,开普敦,南非,9 南非艾滋病研究中心,德班,南非,10 夸祖鲁纳塔尔大学公共卫生医学学科,德班,南非,11 德斯蒙德图图艾滋病毒中心,开普敦,南非,12 开普敦大学惠康非洲传染病研究中心,天文台,南非