断裂愈合是一个复杂的事件,涉及各种不同过程的协调,包括膜内和内侧的骨形成。面对骨折骨不连或延迟的工会时,很少有组织工程结构可以实现预期的结果。主要原因是他们无法概括天然组织的细胞形态,生物学和机械功能。十年前,创造了开发工程一词是指将发展过程用作设计和开发工程的活植入物的蓝图。不同的细胞来源已用作发育工程中的种子细胞。其中,肥厚的软骨细胞吸引了全球关注。肥厚的软骨细胞是生长板软骨细胞的末端状态,导致退化成熟。肥厚的软骨细胞通过调节细胞基质降解,血管形成,破骨细胞募集和成骨细胞分化来介导串扰。此外,肥厚的软骨细胞可以将分化成骨基构和成熟的成骨细胞,并直接促进编织的骨形成。总而言之,阐明肥厚软骨细胞的作用将有助于了解骨折愈合的生理机制,发展的发育工程新型治疗模式的研究和发展,并进一步促进断裂愈合。
†最后一位联合作者摘要Emery-Dreifuss肌肉营养不良1型(EDMD1)是由EMD基因突变引起的罕见遗传疾病,该突变编码编码核包膜蛋白Emerin。尽管了解了疾病的遗传基础,但肌肉和心脏发病机理的分子机制仍然难以捉摸。进展受患者衍生样品的可用性有限的限制,因此迫切需要人类特异性的细胞模型。在这项研究中,我们介绍了诱导多能干细胞(IPSC)系的产生和表征,这些细胞(IPSC)系来自携带EMD突变的EDMD1患者,这些突变导致EMD突变,这些突变与健康供体的IPSC一起导致截断或缺失。患者特异性的IPSC表现出稳定的核型,保持适当的形态,表达多能标记,并证明将分化成三个细菌层的能力。为模型EDMD1,这些IPSC被分化为肌源性祖细胞,成肌细胞和多核肌管,这些肌管代表了肌发生的所有阶段。每个发育阶段都通过特定于阶段的标记的存在来验证,从而确保模型的准确性。我们提出了第一个基于IPSC的体外平台,该平台捕获了肌发生过程中EDMD1发病机理的复杂性。该模型可以显着有助于理解疾病机制,并为EDMD1制定靶向的治疗策略。
摘要 神经退行性疾病 (NDD) 是一组以神经细胞退化为特征的疾病,包括阿尔茨海默病、帕金森病和亨廷顿病。当前的研究依赖于动物模型和二维细胞培养,限制了疾病的准确复制。然而,源自干细胞的 3D 神经类器官为 NDD 研究提供了令人兴奋的前景。神经类器官与正在发育的人类大脑非常相似,已成为疾病建模和药物筛选的宝贵工具。它们可以分化成特定的神经细胞类型并模拟疾病特异性蛋白质聚集。脑类器官改进了药物筛选,评估了药物对神经活动和 BBB 通透性的影响。挑战包括可重复性、血管化和小胶质细胞掺入。尽管如此,神经类器官代表了 NDD 研究的革命性方法,提供了生理相关模型。随着技术的进步,神经类器官在理解和发现神经退行性疾病药物方面具有巨大的前景。关键词:3D 细胞培养、脑类器官、阿尔茨海默病、帕金森病。
他汀类药物是 3-羟基-2-甲基戊二酰辅酶 A (HMG-CoA) 还原酶(一种限制胆固醇合成速度的酶)的特异性抑制剂,在高脂血症和动脉粥样硬化的治疗中发挥作用。多项研究报道了他汀类药物对骨质疏松症、血管生成、成骨作用和炎症调节的作用 (10, 11)。瑞舒伐他汀 (RSV) 是一类第二代亲水性他汀类药物,在减少脂肪和预防心血管疾病方面发挥作用 (12)。由于其亲水性,RSV 不易穿透细胞的双层脂质膜,需要特殊载体才能进入细胞。除了抗炎作用外,RSV 还可以刺激成骨作用、分化成骨细胞并减少氧化应激 (13)。这种他汀类药物通过增加一氧化氮的产生和抑制磷选择素的合成来帮助减轻炎症 (14)。 RSV 能降低破骨细胞活性,刺激成骨细胞分化,并促进骨矿化。它能增加骨形态发生蛋白 (BMP)-2 的表达和碱性磷酸酶 (ALP) 的活性 (10)。BMP-2 作为一种骨诱导因子,通过增加骨诱导基因的转录来促进骨形成,并刺激未成熟间充质细胞(包括成骨细胞)的分化。因此,与那些价格昂贵、半衰期短且可能因分子量高而引起免疫刺激的生长因子相比,BMP-2 的使用将更具优势 (10, 15)。
旨在表征和研究调控性数量性状基因座 (QTL) 的研究也揭示了个体之间的表型差异,包括疾病风险和药物反应的差异。调控性 QTL 效应高度依赖于环境,可能仅在特定条件下表现出来。原则上,诱导性多能干细胞 (iPSC) 可以分化成体内的任何细胞类型,当与单细胞 RNA 测序相结合时,iPSC 能够在不同环境中大规模映射调控性 QTL。挑战在于找到一种方法来快速扩展我们可以表征的细胞类型和细胞状态的维度。为了解决这个问题,我们开发了一种引导式 iPSC 分化方案,可以快速生成时间和功能各异的心脏相关细胞类型。在短短 8-10 天内,我们就能持续复制在费力的定向分化时间进程研究中看到的心脏祖细胞,以及成熟心脏类器官中存在的终末细胞类型。利用引导分化,人们可以快速表征空间和时间多样化的心脏细胞类型中的调控变异和基因与环境的相互作用。
C-Jun的丧失导致早期小鼠胚胎死亡,这可能是由于未能发展出正常的心脏系统。C-Jun如何调节人类心肌细胞命运仍然未知。在这里,我们将人类多能干细胞的体外分化成心肌细胞来研究C-JUN的作用。令人惊讶的是,C-Jun的敲除通过TNNT2+细胞的数量来改善心肌细胞的产生。ATAC-SEQ数据表明,C-JUN缺陷导致与心肌细胞开发有关的关键调节元件上的染色质可及性提高。CHIP-SEQ数据显示,基因敲除C-JUN增加了RBBP5和SETD1B表达,从而改善了调节心脏发生的关键基因的H3K4ME3沉积。C-Jun KO表型可以使用组蛋白脱甲基酶In- hibitor CPI-455复制,该脱甲基酶CPI-455也上调了H3K4me3水平并增加了心肌细胞的产生。单细胞RNA-seq数据定义了三个细胞分支,敲除C-JUN激活了与心脏病相关的更多调节。总而言之,我们的数据表明,C-JUN可以通过调节H3K4ME3修饰和染色质访问性来调节心肌细胞命运,并阐明C-Jun如何调节人类心脏的发育。
诱导性多能干细胞 (iPSC) 已成为细胞疗法的革命性工具,因为它们能够分化成各种细胞类型、供应无限,并且具有作为现成细胞产品的潜力。iPSC 衍生免疫细胞的新进展产生了强大的 iNK 和 iT 细胞,它们在动物模型和临床试验中表现出对癌细胞的强大杀伤力。随着先进的基因组编辑技术的出现,高度工程化的细胞得以开发,我们在此概述了 12 种设计 iPSC 的策略,以克服当前基于细胞的免疫疗法的局限性和挑战,包括安全开关、隐形编辑、避免移植物抗宿主病 (GvHD)、靶向、减少淋巴细胞耗竭、有效分化、提高体内持久性、干细胞、代谢适应性、归巢/运输以及克服抑制性肿瘤微环境和基质细胞屏障。随着先进基因组编辑技术的发展,现在可以将较大的 DNA 序列插入精确的基因组位置,而无需 DNA 双链断裂,从而实现多重敲除和插入。这些技术突破使得以前所未有的速度和效率设计复杂的细胞治疗产品成为可能。iPSC 衍生的 iNK、iT 和先进的基因编辑技术的结合提供了新的机遇,并可能为下一代细胞免疫疗法开启新时代。
摘要 在哺乳动物发育过程中,左心室和右心室分别来自被称为第一和第二心脏区的早期心脏祖细胞群。虽然这些群体已在非人类模型系统中得到广泛研究,但由于获取原肠胚期人类胚胎的伦理和技术限制,它们的鉴定和体内人体组织研究受到限制。人类诱导多能干细胞 (hiPSC) 因其已证实能够分化成所有胚胎胚层的能力而成为模拟早期人类胚胎发生的一种令人兴奋的替代方案。在这里,我们描述了 TBX5/MYL2 谱系追踪报告系统的开发,该系统允许识别 FHF 祖细胞及其后代,包括左心室心肌细胞。此外,我们使用基于寡核苷酸的样本多路复用的单细胞 RNA 测序 (scRNA-seq),在两个独立的 iPSC 系中广泛分析了 12 个时间点的分化 hiPSC。令人惊讶的是,我们的报告系统和 scRNA-seq 分析显示,使用基于小分子 Wnt 的 2D 分化方案,FHF 分化占主导地位。我们将这些数据与现有的小鼠和 3D 心脏类器官 scRNA-seq 数据进行了比较,并证实了我们 hiPSC 衍生的后代中左心室心肌细胞 (>90%) 占主导地位。总之,我们的工作为科学界提供了一种强大的新遗传谱系追踪方法以及正在经历心脏分化的 hiPSC 的单细胞转录组图谱。
最近的研究表明胚胎干细胞 (ESC) 具有不发达的先天免疫系统,但是这一发现的生物学意义尚不清楚。在本研究中,我们比较了小鼠 ESC (mESC) 和 mESC 分化成纤维细胞 (mESC-FB) 对肿瘤坏死因子 α (TNF α ) 和干扰素 (IFN) 的反应。我们的数据表明,单独的 TNF α 、IFN α 、IFN β 或 IFN γ 不会对 mESC 和 mESC-FB 产生明显影响,但 TNF α 和 IFN γ 的组合 (TNF α / IFN γ ) 对 mESC-FB 显示出毒性,表现为细胞周期抑制和细胞活力降低,与诱导型一氧化氮合酶 (iNOS) 的表达相关。但是,在用 TNF α /IFN γ 处理的 mESC 中没有观察到这些影响。此外,mESC-FB 易受脂多糖 (LPS) 激活的巨噬细胞引起的细胞毒性影响,而 mESC 则不然。mESC 在所有情况下对细胞毒性的不敏感性与它们对 TNF α 和 IFN γ 缺乏反应有关。与 mESC 类似,人类 ESC (hESC) 和 iPSC (hiPSC) 对 TNF α 没有反应,并且不易受到 TNF α 、IFN β 或 IFN γ 单独或组合的细胞毒性影响,这些毒性会显著影响人类包皮成纤维细胞 (hFB) 和 Hela 细胞。但是,与 mESC 不同,hESC 和 hiPSC 可以对 IFN γ 作出反应,但这不会在 hESC 和 hiPSC 中引起显著的细胞毒性。我们在小鼠和人类 PSC 中的研究结果共同支持了以下假设:减弱的先天免疫反应可能是一种保护机制,可以限制由炎症和免疫反应引起的免疫细胞毒性。生殖 (2020) 160 547–560
分化成多个细胞群,这些细胞群在三维 (3D) 培养中自组织或组装成类似体内微器官的组织。Yoshiki Sasai 研究小组和 Hans Cleves 研究小组首次证明,在 3D 条件下培养时,多能干细胞 (PSC) 和成体干细胞 (ASC) 能够自组织成类似微器官的结构。Sasai 研究小组证明,3D 培养中的小鼠胚胎干细胞 (ESC) 聚集体能够自主产生极化的皮质神经上皮、优雅的视杯和垂体前叶结构 [1-3]。同时,Cleves 小组的 Sato 等人证明在 3D 基质胶中培养的单个 Lgr5 阳性小鼠肠干细胞能够形成肠隐窝 - 绒毛结构 [4]。这些工作证明了体外培养细胞卓越的自组织能力,并开辟了类器官领域的新道路。在过去十年中,类器官领域得到了蓬勃发展 [5, 6]。自 Sasai、Clevers、Sato 及其同事的研究以来,已报道了大多数小鼠和人类器官的类器官,包括大脑、肠、胃、肝脏、肺、肾、血管和心脏 [7 – 13]。在本综述中,我们将重点介绍哺乳动物(特别是人类)早期发育的类器官,这些类器官也因结构不同而被称为胚状体、胚芽状体或原肠胚状体。我们还将总体讨论类器官领域的未来发展方向。