调节状态在2008年,Adreview®(Iobenguane I 123)注射(GE Healthcare)通过美国食品和药物管理局(FDA)新药申请过程(22-290)批准,用于检测原发性或转移性细胞瘤或神经细胞瘤或神经细胞瘤或神经细胞瘤作为辅助测试。5, The FDA (2013) approved a supplemental new drug application (22-290/S-001) for AdreView and expanded the labeled indication to include scintigraphic assessment of sympathetic innervation of the myocardium by measurement of the H/M ratio of radioactivity uptake in patients with New York Heart Association (NYHA) class II or class III heart failure and LVEF less than 35%.6,理由背景心力衰竭估计在美国有620万成年人患有心力衰竭。在2018年,根据2022年心脏和中风统计更新的数据,在2018年的379,800次死亡证明中提到了心力衰竭,六分之一的心力衰竭和射血分数减少在诊断的18个月内导致疾病恶化恶化,这些人更有可能是黑人,> 80岁,> 80岁,> 80岁,> 80岁,> 80岁,合并症率提高了。2,黑人个体在未来发展心力衰竭的风险最高,其次是西班牙裔,白人和美国人,反映了这些人群中高血压,糖尿病和社会经济地位的发生率的差异。黑人个体在未持有心肌梗塞之前的入射心力衰竭的比例最高(75%)。心力衰竭的根本原因包括冠状动脉疾病,高血压,瓣膜疾病和原发性心肌病。These conditions reduce myocardial pump function and decrease left ventricular ejection fraction (LVEF).一种补偿这种降低心肌功能的早期机制是激活交感神经系统。最初增加的交感神经活动有助于通过增加心率和心肌收缩力来补偿心力衰竭,以维持血压和器官灌注。但是,随着时间的流逝,这会给心肌增加额外的压力,增加冠状动脉灌注要求,从而导致缺血性心脏病和/或心肌损伤恶化。作为弥补心肌功能降低的心脏的能力,会导致心力衰竭的临床症状。增强的交感神经活动的另一种有害作用是增加对潜在致命性心律不齐的敏感性。与心力衰竭相关的过度活跃的交感神经涉及心脏交感神经系统的主要神经递质的神经元释放增加。响应交感神经刺激,含有NE的囊泡被释放到神经元突触裂口中。释放的NE与突触后β1,β2和α受体结合,增强了腺基环化酶活性,并带来了所需的心脏刺激作用。去甲肾上腺素被带回储存或分解代谢处置的突触前空间,终止了摄取-1途径的突触反应。NE的释放增加通常伴随着NE的再摄取减少,从而进一步增加了NE水平。诊断成像鸟嘌呤是一种假神经递质,是NE的类似物。它也被摄取-1途径所采用。碘123个二苯甲酰瓜甘油(123 I-MIBG或MIBG)是用放射性碘标记的化学修饰的鸟嘌呤。碘123元碘苯甲烷基鸟氨酸移入突触裂缝中,然后以类似于NE的方式将其置于突触前神经空间中。但是,与NE不同,MIBG未被分解代谢,因此将其集中在心肌交感神经末端。可以使用常规的伽马摄像机对此集中的MIBG进行成像。3,注射后几个小时内MIBG的浓度是交感神经活性的反映,这反过来又可能与心力衰竭的严重程度相关。
摘要 我们之前已表明,2 周的严格食物限制 (sFR) 饮食(对照 (CT) 饮食的 40% 热量摄入)上调了雌性 Fischer 大鼠的循环肾素血管紧张素 (Ang) 系统 (RAS),这很可能是由于血浆容量下降所致。在本研究中,我们调查了中枢 RAS 在与 sFR 相关的平均动脉压 (MAP) 和心率 (HR) 失调中的作用。虽然 sFR 降低了基础平均 MAP 和 HR,但对脑室 (icv) 微量注射 Ang-[1-8] 的升压反应幅度不受影响;然而,在 sFR 大鼠中微量注射 Ang-[1-8] 26 分钟后 HR 降低了 57 ± 13 bpm,微量注射氯沙坦后也观察到了类似的反应。下丘脑中 Ang-[1-8] 的主要分解代谢途径是通过 Ang-[1-7];然而,CT 动物和 sFR 动物之间 Ang-[1-8] 合成或降解的速率没有差异。虽然 sFR 对穹窿下器 (SFO)、终板血管器 (OVLT) 和第三脑室旁前腹侧正中视前核 (MnPO) 中的 AT 1 R 结合没有影响,但下丘脑旁核 (PVN) 中的配体结合增加了 1.4 倍。这些发现表明,sFR 通过增加 PVN 中的 AT 1 R 表达来刺激中枢 RAS,作为对基础 MAP 和 HR 降低的补偿反应。这些发现对于经历 sFR 时期的人们具有重要意义,因为激活的中枢 RAS 可能会增加他们患上涉及 RAS 过度激活的疾病(包括肾脏和心血管疾病)的风险。
抽象背景上下文:下背痛(LBP)是全球残疾的主要原因,具有巨大的社会经济负担。它主要是由椎间盘变性(IDD)引起的,这是一个进行性和年龄相关的过程。由于其准确表征椎间盘的形态的能力,磁共振成像(MRI)已被确定为诊断IDD中最有价值的工具之一。创新的定量MRI(QMRI)技术能够检测到最早的IDD迹象。目的:系统地回顾有关新型QMRI技术应用以检测早期IDD更改的可用报告。研究设计:系统文献综述。方法:对PubMed/Medline,Scopus,Cinahl,Embase,Central和Cochrane数据库进行系统搜索,直到2023年1月21日。搜索了有或没有粘性LBP患者的早期生化和建筑IDD变化的创新QMRI工具的随机和非随机研究。记录了有关研究人群,随访时间(适用)和使用的MRI序列的数据。Quadas-2工具用于评估纳入研究偏见的风险。结果:搜索产生了2005年至2022年之间的39篇文章。由于评估水含量,蛋白聚糖和糖胺聚糖的浓度的细微变化的能力,与常规MRI相比,所有新型QMRI技术都显示出提高了早期IDD变化的能力,并且能够评估水含量的细微变化以及分解代谢生物标志物的水平。©2023作者。结论:创新的QMRI技术已被证明有效地识别了EDD的过早变化。需要进一步的研究来验证其在更广泛的人群中的应用,并确认其在临床环境中的适用性。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
摘要:心外膜脂肪组织(EAT)是一种内分泌和旁分泌器官,由直接位于心肌和内脏心包之间的一层脂肪组织组成。在生理条件下,饮食会发挥棕色样脂肪特征的保护作用,代谢过量的脂肪酸,并分泌抗炎性和抗纤维化细胞因子。在某些病理条件下,EAT获得了促进的转录验证,从而增加了具有促炎性特性的生物活性脂肪细胞因子的合成,从而促进氧化应激,并最终导致内皮损伤。饮食在心力衰竭(HF)中的作用主要限于HF,并保留了射血分数(HFPEF),并且与HFPEF肥胖表型有关。在HFPEF中,EAT似乎获得了临时弹药的收益,并且更高的饮食价值与较差的结果有关。较少的关于EAT在HF中的作用的数据较少,其射血分数降低(HFREF)。相反,在HFREF中,EAT似乎起着营养作用,较低的值可能对应于分解代谢,不良表型的表达。到目前为止,有证据表明,钠 - 葡萄糖共转运蛋白-2受体抑制剂(SGLT2-I)的有益的全身性心血管效应可能通过对EAT诱导有利的改良作用来部分介导。因此,EAT可能代表着开发新药物以改善心血管预后的有希望的靶心器官。因此,一种基于心脏结构改变和独特生物分子途径的详细表型的方法可能会改变当前情况,从而朝着具有特定的治疗靶标的精确医学模型,以考虑不同的个体方案。这篇综述的目的是总结当前有关HF在整个射血分数中食品的生物分子途径的知识,并将EAT作为HF中的治疗靶标的潜力描述。
正常的人类细胞可以合成胆固醇或从脂蛋白中取出以满足其代谢需求。在某些恶性细胞中,从头胆固醇的合成基因是转录静音或突变的,这意味着生存需要脂蛋白的细胞摄取。最近的数据表明,依赖于脂蛋白介导的胆固醇摄取的淋巴瘤细胞也会受到氧化和铁依赖性细胞死亡机制的影响,这是由细胞膜中氧化脂质积聚而触发的,除非脂质氢氧化酶4(glutathione periquidase 4(GPEXID)的氧化脂质酶4(GPSID)对氧化脂蛋白溶液酶4(GPXID酶4(GPXID)。研究将胆固醇摄取的机制与铁凋亡联系起来,并确定高密度脂蛋白(HDL)受体作为胆固醇消耗疗法的靶标的潜在作用,我们治疗了淋巴瘤细胞系已知对减少HDL型Nananoparke(Hdplike nanopark)(Hdplike nanapters)(Hdpp)(Hdplike nanopart)(Hdpp)(Hdplike)敏感。HDL NP是一种胆固醇贫乏的配体,与富含胆固醇的HDL,可寻求的B1型HDL结合(Scarb1)。我们的数据表明,HDL NP治疗激活了治疗细胞中的分解代谢反应,降低了从头胆固醇的合成,伴随着GPX4表达的几乎完全降低。结果,氧化的膜脂质积聚,通过与铁吞作用一致的机制导致细胞死亡。全身在小鼠淋巴瘤异种移植物和从淋巴瘤患者获得的主要样品中,全身给药后,我们在体内获得了相似的结果。总而言之,用胆固醇吸收中的HDL NP靶向SCARB1 - 上瘾的淋巴瘤细胞消除了GPX4,导致癌细胞死亡与与铁毒性相一致的机制。
• 2 型糖尿病的降糖管理应考虑健康的生活方式行为、糖尿病自我管理教育和支持、避免临床惰性以及健康的社会决定因素。药物治疗应以以人为本的治疗因素为指导,包括合并症和治疗目标。 • 对于患有 2 型糖尿病且已确定/有动脉粥样硬化性心血管疾病、心力衰竭和/或慢性肾病高风险的成年人,治疗方案应包括降低心肾风险的药物。 • 应考虑提供足够疗效以实现和维持治疗目标的药物方法,例如二甲双胍或其他药物,包括联合治疗。 • 体重管理是 2 型糖尿病降糖管理的重要组成部分。降糖治疗方案应考虑支持体重管理目标的方法。 • 开始胰岛素治疗后应继续使用二甲双胍(除非有禁忌症或不耐受),以持续获得血糖和代谢益处。 A 治疗开始时,可以考虑对某些患者进行早期联合治疗,以延长治疗失败的时间。 • 如果有证据表明分解代谢持续进行(体重减轻),如果出现高血糖症状,或者 A1C 水平(>10% [86 mmol/mol])或血糖水平(大于或等于 300 mg/dL)非常高,则应考虑早期引入胰岛素。 • 应以人为本的方法指导药物的选择。考虑对心血管和肾脏合并症的影响、疗效、低血糖风险、对体重的影响、成本和获取、副作用风险以及个人偏好。 • 对于已确诊动脉粥样硬化性心血管疾病或有高心血管风险指标、已确诊肾脏疾病或心力衰竭的 2 型糖尿病患者,建议将具有心血管疾病益处的钠-葡萄糖协同转运蛋白 2 抑制剂和/或胰高血糖素样肽 1 受体激动剂作为降糖治疗的一部分
摘要。基于内脏脂肪的代谢综合征对动脉粥样硬化心血管疾病(CVD),聚类糖尿病,血脂异常,高血压,高尿酸血症和非酒精性脂肪肝病(NAFLD)的影响很大。脂联素是一种由脂肪细胞专门分泌的蛋白质,在人体血液中大量循环,但其浓度在病理状况(例如内脏脂肪积累)下降低。广泛的临床证据表明,低脂肪核酸血症与CVD和慢性器官疾病的发展有关。尽管已经鉴定出脂联素的几个结合伴侣,例如adipor1/2,但脂联素如何对各种器官产生多种有益作用,尚待充分阐明。脂联素研究的最新进展表明,脂联素通过与独特的糖基磷脂酰肌醇锚定的T-钙粘着蛋白结合而在心血管组织上积累。脂联素/T-钙粘蛋白复合物增强了外泌体的生物发生和分泌,这可能有助于维持细胞稳态和组织再生,尤其是在脉管系统中。黄嘌呤氧化还原酶(XOR)是一种限制酶,可分解黄嘌呤和黄嘌呤与尿酸。XOR在反应过程中产生活性氧,这表明XOR参与了CVD进展的病理机制。临床和实验室研究的最新发现表明,血浆XOR活性与肝酶之间存在很强的正相关。,尤其是在NAFLD条件下,过量的肝XOR泄漏到血液中,加速了循环中嘌呤的分解代谢,使用从血管内皮细胞和脂肪细胞中分泌的低黄嘌呤,这可以促进血管重塑。在这篇综述中,我们专注于脂肪衍生的脂联素和肝脏衍生的XOR在与代谢综合征相关的CVD发展中的心血管意义。
蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。
假单胞菌 KT2440 是一种强大的芳香分解代谢细菌,已被广泛改造用于将生物基和废物基原料转化为目标产品。为了对假单胞菌 KT2440 进行工业化驯化,之前已经进行了合理的基因组减少,从而产生了假单胞菌菌株 EM42,该菌株表现出可能对生产菌株有利的特征。在这里,我们比较了假单胞菌 KT2440 和 EM42 衍生菌株从芳香族化合物对香豆酸和在单独的菌株中从葡萄糖生产顺式、顺式-粘康酸的情况。令我们惊讶的是,EM42 衍生菌株在从任何一种底物生产粘康酸方面的表现并不优于 KT2440 衍生菌株。在生物反应器培养中,KT2440 和 EM42 衍生菌株分别以 45 g/L 和 37 g/L 的滴度从对香豆酸产生粘康酸,并以 20 g/L 和 13 g/L 的滴度从葡萄糖产生粘康酸。为了进一步了解亲本菌株之间的差异,我们分析了 KT2440 和 EM42 在芳香族化合物作为唯一碳源和能源时的生长情况。总体而言,EM42 菌株的生长速度比 KT2440 菌株低,但生长滞后时间更短。我们还观察到,与 KT2440 衍生菌株相比,EM42 衍生菌株在葡萄糖上的生长速度更高,但仅限于测试的最低葡萄糖浓度。转录组学显示,EM42 中的基因组减少对转录水平具有整体影响,并表明从葡萄糖产生粘康酸的 EM42 衍生菌株在响应葡萄糖浓度变化时表现出基因表达调节降低。总体而言,我们的研究结果表明,有必要进行进一步研究来了解基因组减少对微生物代谢和生理的影响,特别是当用于生产菌株时。
阿尔茨海默病 (AD) 是一种神经退行性疾病,会导致记忆力、思维能力和社交能力逐渐下降。1 目前,尚无针对这种疾病的疾病改良疗法,这是我们这个时代最具挑战性的医疗保健问题之一。阿尔茨海默病的疾病改良治疗策略的发现仍然是正在进行的研究课题。2 随着全球人口不断老龄化,阿尔茨海默病 (AD) 的患病率稳步上升,这凸显了开发能够减缓或阻止疾病进展的疾病改良疗法的必要性。3 AD 的发病机制以多种途径和过程的参与为特征。其中一条途径是乙酰胆碱酯酶 (AChE) 途径,它导致神经元通讯逐渐丧失。4 在阿尔茨海默病进展中,由于胆碱能神经元退化导致乙酰胆碱水平下降,导致认知障碍。 5 乙酰胆碱可用性降低会破坏突触传递,随着时间的推移加剧记忆力减退和认知能力下降。6 由于海马体中乙酰胆碱 (ACh) 活性降低,记忆力减退被认为是胆碱能神经元退化所致。大脑表现出严重的 AChE 通路失调,这是 AD 的典型特征。AChE 是一种分解代谢酶,可导致大脑中 ACh 的分解,也被认为是 AD 的一种改善病情的治疗策略。7,8 已开发并批准了几种用于治疗 AD 症状的药物,包括他克林、多奈哌齐、利凡斯的明和加兰他敏。然而,它们有多种副作用,包括晕厥、恶心、呕吐、癫痫、头晕和腹泻。 9 药用植物通过次级代谢产生种类繁多的初级和次级化合物,因此其化学多样性比其他具有药理活性的天然来源更大。 10 研究人员对研究传统药用植物、其成分甚至其混合物以开发治疗疾病的药物表现出浓厚的兴趣。 11 其中的化学成分被用于开发药物,因为它们的危害性比合成化学药物要小。 12