Gireesh Soni (D16EC007):论文题目:“大雨天气条件下光无线链路的实验研究”,2021 年。 Dipika Pradhan (D14EC004):论文题目:“掺铒光纤放大器的实验分析以及用于 DWDM 系统的 EDFA、拉曼、TDFA 和混合放大器的设计优化,2021 年”。 Varun Shrivastava (DS16EC004) 论文题目:“湍流大气条件下具有波长分集的 FSO 系统的性能分析”,2022 年。 Abhishek Tripathi (D17EC002) 论文题目:“大雨天气条件下光学无线链路的实验研究”,2023 年。 Dhiraj Patel (D17EC005):论文题目:“用于高数据速率传输的支持前向纠错的自由空间光链路研究”,2023 年。 正在进行的博士指导:四 (04) - 指导的 M.Tech 论文数量:二十四 (27) - 指导的 B.Tech 项目数量:二十七 (29)
控制原生动物寄生虫引起的疾病是联合国的可持续发展目标之一。近年来,人们投入了大量研究来开发针对疟疾、恰加斯病和利什曼病的新一代减毒活疫苗 (LAV)。然而,这些疫苗的生物安全、生产和分销方面存在瓶颈,阻碍了其进一步发展。在临床试验中评估的第一个针对利什曼病的 LAV 中添加了辐照或遗传减毒的抗疟子孢子,这一成功表明 LAV 的缺点正在逐渐被克服。然而,LAV 的持久性是否是持续长期免疫的先决条件仍有待明确,并且需要标准化候选疫苗的临床评估程序。
被忽视的热带病是一组异质性疾病,其共同特征是影响贫穷和无人帮助的人群,他们几乎没有发声能力和政治权力。因此,它们很少受到制药业和学术界的关注。本研究旨在总结巴西三种被忽视的热带病疫苗开发的最新进展:恰加斯病、曼氏血吸虫病和利什曼病。为此,我们对科学文献进行了叙述性回顾,包括允许我们概述这三种疾病疫苗开发现状的出版物。针对这三种疾病的疫苗处于不同的开发阶段。针对美洲锥虫病的疫苗开发项目尚未进入临床评估阶段。对于血吸虫病,我们有处于临床评估后期的候选疫苗。对于利什曼病,已经有获得许可的兽用疫苗和处于临床评估中期的人用疫苗候选产品。这些项目资金的减少导致产品开发的缓慢。
据报道,用于治疗非洲人类锥虫病(美拉胂醇)和利什曼病(五价锑剂、米替福新)的动基体在实地表现出不同程度的耐药性。动基体治疗往往尽可能采用联合疗法,例如用于治疗非洲人类锥虫病的硝呋替莫-依氟鸟氨酸联合疗法,或用于治疗利什曼病的五价锑剂加巴龙霉素/两性霉素 B 或米替福新,这些疗法的疗效和安全性受到密切监测。通过对用于治疗非洲人类锥虫病、恰加斯病和一些用于治疗内脏利什曼病的捐赠药物进行有控制的分发,世卫组织得以支持药物警戒系统,以密切监测这些药物的标准化使用、安全性和疗效。据报道,用于治疗麻风病的大多数药物(氨苯砜、利福平、氟喹诺酮类药物等)也出现了耐药性。全球麻风病消除规划可能是唯一一个有世卫组织明确指导监测抗菌素耐药性和哨点监测系统的被忽视的热带病规划。
开发针对利什曼原虫的保护性疫苗取决于抗原配方和诱导特异性免疫和持久免疫反应的佐剂。我们之前证明,鼻腔内接种编码 p36/LACK 利什曼原虫抗原 (LACK-DNA) 的质粒 DNA 的 BALB/c 小鼠在接种疫苗后可产生长达 3 个月的保护性免疫,这与疫苗 mRNA 在外周器官中的全身表达有关。在本研究中,LACK-DNA 疫苗与交联甘油醛 (CMC) 的生物相容性壳聚糖微粒相结合,以增强对晚期利什曼原虫攻击的持久免疫力。与未接种疫苗的对照组相比,接种疫苗后 7 天、3 或 6 个月感染导致寄生虫负荷显著降低。此外,接种 LACK-DNA-壳聚糖疫苗的小鼠在晚期时间点攻击后表现出长期保护作用。所获得的保护与脾细胞对寄生虫抗原的增强反应相关,其特点是增殖和 IFN-g 增加以及 IL-10 产生减少。此外,我们发现 TNF-a 的系统水平降低,这与 LACK-DNA/CMC 疫苗接种感染小鼠中观察到的较好健康状况相一致。总之,我们的数据表明壳聚糖微粒作为递送系统工具来延长 LACK-DNA 疫苗赋予的保护性免疫的可行性,这可以在针对利什曼原虫感染的疫苗制剂中进行探索。
利什曼病是拉丁美洲、非洲、亚洲和欧洲的主要公共卫生问题之一。由于缺乏人用疫苗和有效的媒介控制计划,化疗成为控制所有形式该疾病的主要策略。然而,现有药物的高毒性、治疗药物的选择有限以及耐药性寄生虫菌株的出现是与化疗相关的主要挑战。目前,只有少数药物可用于利什曼病治疗,包括五价锑化合物 (SbV)、两性霉素B及其制剂、米替福新、硫酸巴龙霉素和羟乙基磺酸喷他脒。除了药物毒性之外,利什曼病的治疗失败也是一个严重的问题。耐药性寄生虫的出现是治疗失败的原因之一,并且与该属寄生虫的多样性密切相关。由于基因组具有巨大的可塑性,抗药性可以通过改变不同的代谢途径产生,这表明抗药性机制是多因素的,极其复杂。遗传变异和基因组可塑性不仅导致现有药物存在局限性,而且使寻找新药变得具有挑战性。在这里,我们研究了阻碍药物发现的寄生虫的生物学特性。
利什曼病是拉丁美洲、非洲、亚洲和欧洲的主要公共卫生问题之一。由于缺乏人用疫苗和有效的媒介控制计划,化疗成为控制所有形式该疾病的主要策略。然而,现有药物的高毒性、治疗药物的选择有限以及耐药性寄生虫菌株的出现是与化疗相关的主要挑战。目前,只有少数药物可用于利什曼病治疗,包括五价锑化合物 (SbV)、两性霉素B及其制剂、米替福新、硫酸巴龙霉素和羟乙基磺酸喷他脒。除了药物毒性之外,利什曼病的治疗失败也是一个严重的问题。耐药性寄生虫的出现是治疗失败的原因之一,并且与该属寄生虫的多样性密切相关。由于基因组具有巨大的可塑性,抗药性可以通过改变不同的代谢途径产生,这表明抗药性机制是多因素的,极其复杂。遗传变异和基因组可塑性不仅导致现有药物存在局限性,而且使寻找新药变得具有挑战性。在这里,我们研究了阻碍药物发现的寄生虫的生物学特性。
摘要 CRISPR/Cas9 基因编辑彻底改变了利什曼病的病原体利什曼原虫的功能丧失实验。然而,由于利什曼原虫缺乏功能性非同源 DNA 末端连接途径,因此获得无效突变体通常需要额外的供体 DNA、选择与药物耐药性相关的编辑或耗时的克隆分离。因此,目前无法在不同条件下和多种利什曼原虫物种中进行全基因组功能丧失筛选。在这里,我们报告了一个克服这些限制的 CRISPR/Cas9 胞嘧啶碱基编辑器 (CBE) 工具箱。我们利用利什曼原虫中的 CBE 通过将胞嘧啶转化为胸腺嘧啶来引入终止密码子,并创建了用于动基体中 CBE 引物设计的 http://www.leishbaseedit.net/。通过报告基因检测以及针对 L. mexicana 、 L. major 、 L. donovani 和 L. infantum 中的单拷贝和多拷贝基因,我们展示了该工具如何通过仅表达一个单向导 RNA 来有效生成功能性无效突变体,在非克隆群体中达到高达 100% 的编辑率。然后,我们生成了针对利什曼原虫优化的 CBE,并成功地针对质粒文库传递的 L. mexicana 中的功能丧失筛选中的必需基因。由于我们的方法不需要 DNA 双链断裂、同源重组、供体 DNA 或克隆分离,我们相信这首次使通过质粒文库传递在利什曼原虫中进行功能性遗传筛选成为可能。
美国,2020 年 1 月。网站和博客:https://hydrogen.wsu.edu/ 2022 年:用户:33,420;页面浏览量:58,755。2021 年:用户:36,393;页面浏览量:67,363。2020 年:用户:26,457;页面浏览量:56,214。2019 年:用户:18,876;页面浏览量:34,039。2018 年:用户:19,447;页面浏览量:33,465。2017 年:用户:15,701;页面浏览量:31,879。2016 年:用户:N/A;页面浏览量:24,501。2015 年:用户:N/A;页面浏览量:2,554。博士后学生:Ian Richardson,2018 年 1 月至 2021 年 12 月;由华盛顿研究基金会资助。Patrick Adam,2017 年 9 月至 2021 年 6 月;由华盛顿州立大学教务长办公室资助。富布赖特和访问学者:Archie West,2023 年 9 月至 2023 年 12 月;由空中客车公司资助,作为访问技术体验。Liam Turner,2022 年 5 月至 2023 年 5 月;由富布赖特基金会资助,来自莫纳什大学访问
直到 2015 年,阐明利什曼原虫蛋白质功能的功能丧失研究都依赖于通过同源重组进行基因破坏。随后,CRISPR/Cas9 革命影响到了这些原生动物寄生虫,只需一轮转染即可实现有效的基因组编辑。此外,LeishGEdit 的开发(一种基于 PCR 的工具包,用于使用 CRISPR/Cas9 生成敲除和标记系)使基因组编辑更加直接有效。在此系统中,质粒 pTB007 被递送至利什曼原虫,在 b-微管蛋白基因座中进行游离表达或整合,并稳定表达 T7 RNA 聚合酶和 Cas9。在南美洲,尤其是在巴西,利什曼原虫 (Viannia) braziliensis 是皮肤利什曼病最常见的病原体。与利什曼原虫相比,L. braziliensis b-微管蛋白基因座表现出显著的序列差异,这阻碍了 pTB007 的有效整合和 Cas9 的稳定表达。为了克服这一限制,pTB007 中存在的 L. major b-微管蛋白序列被利什曼原虫 (Viannia) b-微管蛋白保守序列取代,从而产生了 pTB007_Viannia 质粒。这一修改使 pTB007_Viannia 盒式磁带成功整合到 L. braziliensis M2903 基因组中,并且计算机预测表明这也可以在其他 Viannia 物种中实现。通过敲除鞭毛蛋白 PF16 来评估 Cas9 的活性,这导致这些转染子中出现不动表型。内源性PF16也成功被mNeonGreen标记,并采用基因座互补策略将PF16基因的C端标记拷贝返回到原始基因座,从而恢复游泳能力。