。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年6月24日。 https://doi.org/10.1101/2024.06.20.599684 doi:Biorxiv Preprint
1 University of Electronic Science and Technology of China, School of Computer Science & Engineering (School of Cybersecurity), Digital Media Technology, Chengdu, Sichuan, China 2 The University of Chicago, The Division of the Physical Sciences, Analytics, Chicago, IL, USA 3 University of Electronic Science and Technology of China, School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), Microelectronics Science and工程,成都,四川,中国4号华盛顿大学,位于圣路易斯,奥林商学院,金融,圣路易斯,莫5哥伦比亚大学,FU工程基金会和应用科学学院,运营研究,纽约,纽约,纽约,纽约州a xiangao1434964964935@gmail@gmail.com,bimonajue.com,bsimonajue.com@yconajue.com@yqmail.com,dd99797979. liyang.wang@wustl.edu,e yucheng576@gmail.com
腺苷到肌苷的 RNA 编辑和前 mRNA 剪接主要在转录过程中发生并相互影响。在这里,我们使用缺乏两种编辑酶 ADAR(ADAR1)或 ADARB1(ADAR2)之一的小鼠来确定 RNA 编辑对不同组织剪接的转录组范围影响。我们发现 ADAR 对剪接的影响比 ADARB1 高 100 倍,尽管这两种酶都靶向相似数量的底物,并且有很大的共同重叠。一致地,差异剪接区域经常包含 ADAR 编辑位点。此外,催化失活的 ADAR 也会影响剪接,表明 ADAR 的 RNA 结合会影响剪接。相反,ADARB1 编辑位点在差异剪接区域的 5' 处富集。这些 ADARB1 介导的编辑事件中的几个会改变剪接共识序列,因此强烈影响某些 mRNA 的剪接。差异编辑位点和差异剪接位点之间的显著重叠表明,剪接的进化选择受到组织特异性编辑的调控。
作者:Oscar G. Wilkins 1,2 *、Max ZYJ Chien 1,2 †、Josette J. Wlaschin 3,4 †、Simone Barattucci 1 、Peter Harley 1 、2
摘要:大豆固氮消耗大量能量,导致根瘤和未接种根的能量代谢和线粒体活动存在显著差异。尽管线粒体转录本的 C 到 U RNA 编辑和内含子剪接在植物物种中很常见,但它们与根瘤功能的关系尚不清楚。在本研究中,我们进行了 RNA 测序以比较大豆根瘤和根中线粒体基因的转录本谱和 RNA 编辑。在线粒体转录本上共鉴定出 631 个 RNA 编辑位点,其中 12% 或 74 个位点在从根瘤、剥离根和未接种根中分离的转录本中存在差异编辑。这 74 个差异编辑位点中有 8 个位于 matR 转录本上,其中 RNA 编辑程度在根瘤样本中最高。还检查了线粒体内含子剪接的程度。根瘤和剥离根中几个内含子的剪接效率高于未接种根。这些包括 nad1 内含子 2 / 3 / 4、nad4 内含子 3、nad5 内含子 2 / 3、cox2 内含子 1 和 ccmFc 内含子 1。在根瘤中还观察到 nad4 内含子 1 的更高剪接效率、更高的 NAD4 蛋白丰度以及超复合物 I + III 2 的减少,尽管这些观察结果之间的因果关系需要进一步研究。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2021年8月6日发布。 https://doi.org/10.1101/2021.08.05.455347 doi:biorxiv Preprint
摘要:致癌基因MDM4最初被命名为MDMX,已被鉴定为p53相互作用蛋白和肿瘤抑制因子p53的关键上游负调节因子。越来越多的证据表明,MDM4在多种人类癌症的发生和发展中起着关键作用。MDM4在人类癌症中经常被扩增和上调,通过阻断p53通路下游靶基因的表达导致细胞过度生长和凋亡抑制。研究表明,MDM4-p53相互作用的阻断剂可以恢复p53在癌细胞中的抗肿瘤活性。MDM4具有多种剪接异构体,其表达由癌细胞中的致癌基因驱动。一些MDM4剪接异构体缺乏p53结合域,可能表现出p53独立的致癌功能。这些特征使MDM4成为癌症治疗的一个有吸引力的治疗靶点。在本综述中,我们主要关注 MDM4 剪接异构体的详细分子结构、启动 MDM4 剪接的候选调节剂、癌症中 MDM4 异构体的失调以及针对 MDM4 剪接异构体的潜在治疗策略。
前 mRNA 的选择性剪接对细胞和组织特异性蛋白质表达模式的多样性有很大影响。全球转录组分析表明,90% 以上的人类多外显子基因都是选择性剪接的。剪接过程的改变会导致错误剪接事件,从而导致遗传疾病和病理,包括各种神经系统疾病、癌症和肌营养不良症。近几十年来,研究有助于阐明调节选择性剪接的机制,在某些情况下,还揭示了这些机制的失调如何导致疾病。由此产生的知识使我们能够设计出新的治疗策略来纠正剪接衍生的病理。在这篇综述中,我们主要关注针对剪接的治疗方法,并重点介绍基于纳米技术的基因传递应用,以解决核酸疗法面临的挑战和障碍。
证明与Venetoclax BH-30236有效抑制了FLT3-ITD和抗性突变BH-30236在癌症异常剪接中有效调节的异差替代剪接是一种新的认识的癌症的标志,在癌症中发挥了重要的作用,在癌症中起着重要的作用,在癌症中发挥了重要作用,并在癌症中起着至关重要的作用。增殖,凋亡减少,迁移和转移潜力增强以及诱导免疫监测的逃避。丝氨酸和精氨酸富含的剪接因子(SRSF)是调节本构和替代剪接的RNA结合蛋白(RBP)。SRSF通常在癌症中突变或过表达,从而导致剪接模式的广泛改变。CDC样激酶(CLK)家族和双特异性酪氨酸调节激酶(DYRK)磷酸化SRSFS,影响剪接体机械,外显子识别和拼接的组装。因此,靶向clk/dyrk激酶可以调节癌症特异性剪接同工型,为新的治疗干预措施开辟了途径。BH-30236被设计为一种新型口服生物利用,ATP竞争力的,巨环的CLK,IC 50 s的0.134、0.165和0.446 nm的CLK1,CLK2和CLK4分别在酶激酶分析中,分别为0.134、0.165和0.446 nm。在临床相关的浓度下,BH-30236也抑制了DyRK1A/1B/2,是Moloney Moirone鼠白血病病毒激酶3(PIM3)和FMS样酪氨酸激酶3(FLT3)的前病毒插入部位,具有0.110,0.110,0.148,0.148,0.562,0.562,0.248 nm,IC 50 s的IC 50 s。此外,BH-30236还用0.16 nm的IC 50抑制了FLT3磷酸化。在癌细胞中,BH-30236损害了SRSFS,TAU和4EBP1的磷酸化,CLK,DYRK和PIM激酶的直接下游底物分别为40-60,〜50和〜80 nm。总体而言,BH-30236主要通过诱导跳过的外显子来调节替代剪接,以支持抗肿瘤同工型,从而在癌细胞系和体内功效研究中导致癌细胞死亡和抑制癌细胞死亡和生长抑制。例如,BH-30236在FLT3-ITD阳性MV-4-11细胞中用IC 50的IC 50抑制细胞增殖,即使在MV-4-11肿瘤模型中也完全抑制了MV-4-11肿瘤模型的完全肿瘤消退,即使停止了剂量30天。在MV-4-11细胞中,BH-30236增加了促凋亡同工型BCL-XS,BCL2,MCL1和AML干细胞标记CD33和CD123的RNA表达下调。此外,BH-30236还表现出了良好的人类Adme和临床前的安全概况。总体而言,临床前研究最大程度地支持了这种新型多次峰酶CLK抑制剂BH-30236在血液恶性肿瘤和实体瘤中的临床应用,作为单一药物或与其他疗法结合使用。
RNA编辑是一种转录前或转录后修饰,某些细胞可以在转录后对RNA分子中的特定核苷酸序列进行离散改变。前期研究发现RNA编辑可能与癌症和衰老有着密切的关系,但RNA编辑在人类早期胚胎发育中的作用尚不明确。本研究通过分析单细胞RNA测序数据,发现36.7%的RNA编辑位点在胚胎早期发育阶段存在差异编辑率,并且在8细胞阶段RNA编辑率发生了较大的重编程,此时大多数差异编辑的RNA编辑位点(99.2%)的RNA编辑率降低。此外,在人类早期胚胎发育过程中,RNA编辑更可能发生在RNA剪接位点上。此外,我们还发现长链非编码RNA(lncRNA)编辑位点更有可能位于RNA剪接位点(风险比= 2.19,P = 1.37×10 − 8),而mRNA编辑位点的可能性较小(风险比= 0.22,P = 8.38×10 − 46)。此外,我们还发现lncRNA上的RNA编辑率与lncRNA外显子百分比剪接指数(PSI)具有显著更高的相关系数(R = 0.75,P = 4.90×10 − 16),这表明RNA编辑可能在人类早期胚胎发育过程中调控lncRNA剪接。最后,功能分析表明,那些受RNA编辑调控的lncRNA在信号转导、转录表达调控和线粒体钙离子跨膜转运方面富集。总的来说,我们的研究可能为人类发育生物学和常见出生缺陷中 lncRNA 的 RNA 编辑机制提供新的见解。