调节反义寡核苷酸(ASOS)为罕见的神经系统疾病提供治疗选择,包括患者特异性,个性化的ASOS,其中包括非常罕见的突变。受到米拉森(Milasen)的发展,1突变1药物(1m1m)和荷兰RNA治疗中心(DCRT)的启发,旨在发展特异性患者ASO,并分别治疗欧洲和荷兰的合格患者。将在指定的患者环境下提供治疗。我们的举措受益于欧洲药品局(EMA)在临床前校对研究,安全研究,复合和衡量治疗患者的福利和安全性方面的监管建议。我们在这里概述了这些相互作用中最重要的考虑因素,以及我们如何在欧洲境内制定和治疗合格患者的计划中实施此建议。
RNA 剪接失调是几乎所有肿瘤类型的分子特征。癌症相关的剪接变异既来自复发性突变,也来自控制剪接催化和调节的反式因子表达改变。癌症相关的剪接失调可通过多种机制促进肿瘤发生,导致细胞增殖增加、凋亡减少、迁移和转移潜能增强、化疗耐药和逃避免疫监视。最近的研究已经确定了在癌细胞转化和生长中发挥关键作用的特定癌症相关异构体,并证明了纠正或以其他方式拮抗此类癌症相关 mRNA 异构体的治疗益处。调节或抑制 RNA 剪接的临床级小分子同样已被开发为有前途的抗癌疗法。在这里,我们回顾了癌细胞转录组特有的剪接变异、失调剪接对肿瘤发生和进展的贡献,以及针对剪接进行癌症治疗的现有和新兴方法。最后,我们讨论了将这些发现转化为临床应用必须解决的悬而未决的问题和挑战。
运行标题:A-to-I RNA 编辑影响前 mRNA 剪接 3 4 作者:5 Utkarsh Kapoor 1*、Konstantin Licht 1*、Fabian Amman 1,2、Tobias 6 Jakobi 3、David Martin 1、Christoph Dieterich 3 和 Michael F. Jantsch 1 7 8 9 1. 解剖学和细胞生物学中心,10 细胞和发育生物学系,11 维也纳医科大学 12 Schwarzspanierstrasse 17 13 A-1090 维也纳,奥地利 14 15 2. 理论生物化学研究所 16 维也纳大学 17 Währingerstrasse 17 18 A-1090 维也纳,奥地利 19 20
1寿命中心的大脑和认知变化中心(LCBC),挪威奥斯陆奥斯陆大学心理学系; 2 d'imagerie Neurofonctionnelle,Institut desNeurodégénérations-umr-5293,CNRS,CNRS,CEA,CEA,Bordeaux,Borteaux,Borteaux,Borteaux,Borteaux; 3法国巴黎索邦大学的Brian连接性和行为实验室; 4德国尤里奇研究中心神经科学与医学研究所; 5语言和遗传学系,马克斯·普朗克心理语言学研究所,荷兰尼亚梅根; 6荷兰Nijmegen的Radboud大学Donders大脑,认知与行为研究所; 7荷兰Nijmegen Radboud大学医学中心人类遗传学系; 8挪威奥斯陆奥斯陆大学心理学系的Promenta Research Center; 9挪威奥斯陆奥斯陆大学医院放射与核医学系; 10认知和临床神经科学的部分,奥斯陆奥斯陆大学心理学系,挪威
附属机构:1 丹娜—法伯癌症研究所肿瘤内科系,美国马萨诸塞州波士顿 02215。2 麻省理工学院和哈佛大学布罗德研究所,美国马萨诸塞州剑桥 02142,美国马萨诸塞州剑桥 02142。3 哈佛医学院布拉瓦尼克研究所生物化学和分子药理学系,美国马萨诸塞州波士顿 02115。4 哈佛医学院路德维希中心,美国马萨诸塞州波士顿 02115。5 纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目,美国纽约州纽约 10021。6 迈阿密大学米勒医学院西尔维斯特综合癌症中心医学系血液学分部,美国佛罗里达州迈阿密 33136。7 H3 Biomedicine, Inc.,美国马萨诸塞州剑桥 300 Technology Square 02139。 8 丹娜法伯癌症研究所病理学系;美国马萨诸塞州波士顿 02215。
摘要 DNA 拓扑异构酶 II α (170 kDa, TOP2 α /170) 诱导增殖细胞中瞬时 DNA 双链断裂,以解决染色体凝聚、复制和分离过程中的 DNA 拓扑纠缠。因此,TOP2 α /170 是抗癌药物的主要靶点,其临床疗效常常因化学耐药性而受到影响。尽管已经确定了许多耐药机制,但人类癌细胞系对 TOP2 α 界面抑制剂/毒药的获得性耐药通常与 Top2 α /170 表达水平的降低有关。我们实验室最近的研究,结合其他研究人员的早期发现,支持以下假设:对 TOP2 α 靶向药物的获得性耐药的主要机制是由于替代的 RNA 加工/剪接。具体而言,已报道了几种 TOP2 α mRNA 剪接变体,它们保留了内含子,并被翻译成缺乏核定位序列的截短 TOP2 α 异构体,随后导致核质分布失调。此外,内含子保留可能导致截短异构体缺乏核定位序列和活性位点酪氨酸 (Tyr805),而活性位点酪氨酸是形成酶-DNA 共价复合物所必需的,并且在存在 TOP2 α 靶向药物的情况下诱导 DNA 损伤。最终,这些截短的 TOP2 α 异构体导致药物对细胞核中的 TOP2 α 的活性降低并表现出耐药性。因此,对调节 TOP2 α 前 mRNA 的替代 RNA 加工的机制的完整表征可能会产生新的策略来规避获得性耐药性。此外,新型 TOP2 α 剪接变体和截短的 TOP2 α 同工型可用作药物耐药性、预后和/或直接未来 TOP2 α 靶向治疗的生物标志物。
该预印本版的版权持有人于2024年10月16日发布。 https://doi.org/10.1101/2024.10.16.618683 doi:Biorxiv Preprint
当前的工作符合 CF 领域正在进行的努力,旨在满足所谓“最后 10%”的高度未满足的医疗需求,即 pwCF,根据其特定的基因型,这些患者不适合 HEMT 并且处于前调节剂时代。除了严重的错义突变之外,这些基因型还包括剪接、插入或缺失 (indel) 或无义突变,从机制上来说,预计这些突变不会对任何当前或未来的调节剂疗法产生反应。为了解决这一未满足的医疗需求,CF 领域努力研究基因添加和基因编辑方法(见表 1)。事实上,自从 HEMT 最常见的突变 F508del 以及门控和残留功能突变获得临床批准以来,药物难治性突变一直是研究的重中之重(见表 1)。 c.3718-2477C>T 是一种残留功能突变,携带此类突变的 pwCF 现在有资格获得美国批准的 CFTR 调节剂(https://www.fda.gov/)。6 在欧洲,只有携带突变与 F508del 等位基因结合的 pwCF 才有资格获得 Symkevi(tezacaftor/ivacaftor)
Title: Specificity, synergy, and mechanisms of splice-modifying drugs Authors : Yuma Ishigami 1,† , Mandy S. Wong 1,2,† , Carlos Martí-Gómez 1 , Andalus Ayaz 1 , Mahdi Kooshkbaghi 1 , Sonya Hanson 3 , David M. McCandlish 1 , Adrian R. Krainer 1,* , Justin B. Kinney 1,*。隶属关系:1。Cold Spring Harbour实验室,纽约州冷泉港,美国11724,美国。2。当前地址:横梁治疗学,马萨诸塞州剑桥,美国02142,美国。3。flatiron Institute,纽约,纽约,10010,美国。†同等贡献。*通信:krainer@cshl.edu(ark),jkinney@cshl.edu(jbk)。摘要:针对MRNA剪接的药物具有很大的治疗潜力,但是对这些药物的工作原理的定量了解受到限制。在这里,我们引入了机械解释的定量模型,以针对剪接修改药物的序列特异性和浓度依赖性行为。使用大量平行的剪接测定,RNA-seq实验和精确剂量反应曲线,我们获得了两种用于治疗脊柱肌萎缩的两种小分子药物Risdiplam和Branaplam的定量模型。的结果定量地表征了Risdiplam和Branaplam对于5'剪接位点序列的特异性,这表明Branaplam通过两种不同的相互作用模式识别5'剪接位点,并证明了SMN2 Exon 7的Risdiplam活性的普遍的两点假设。结果还表明,在小分子药物和反义寡核苷酸药物中,异常的单药合作以及多药协同作用是促进外生包容的。Nusinersen 11–我们的定量模型阐明了现有治疗的机制,并为新疗法的合理发展提供了基础。引言替代性mRNA剪接已成为药物发育的主要重点1-10。已经开发了三种剪接改良药物 - Nusinersen,Risdiplam和Branaplam,以治疗脊柱肌肉萎缩(尽管Branaplam已撤回)。所有三种药物都通过促进SMN2外显子7。
STAR ( Spliced Transcripts Alignment to a Reference )是用于将 RNA-seq 读取数据与 参考基因组序列进行高度准确和超快速的剪接感知( splice aware ) 比对的工具。注意, STAR 是一个专门针对 RNA-seq 数据映射的比对工具,这意味着不能用于比对 DNA 数据。与 其它的 RNA-seq 比对工具相比,其具有较高的准确率,映射速度较其他比对软件高 50 多 倍。 STAR 在识别经典和非经典剪接位点方面具有很高的精确性,还可以检测到嵌合(融 合)转录本。除了映射短读取数据(例如 ≤ 200 bp ), STAR 还可以准确地映射长读取数据 (例如来自 PacBio 或 Ion Torrent 的数 Kbp 读取数据)。 STAR 在变异检测( SNP 和 INDEL ) 方面具有更好的灵敏度,因此, STAR 被用于 GATK 最佳实践工作流程,用于从 RNA-seq 数据 中识别短变异。