固体激光冷却是一项突破性技术,能够以微型方式将温度无振动冷却至 100 K。它似乎是一种很有前途的技术,可以提高未来观测卫星的性能,例如在 SWIR 和 NIR 领域。本文首次研究了在观测卫星上集成激光冷却器。我们的研究侧重于卫星有效载荷和平台级别的尺寸、重量和功率 (SWaP) 标准。其目标是评估在低地球轨道 (LEO) 红外观测任务中使用光学低温冷却器而不是机械低温冷却器的兴趣。提出了一种初步的空间激光冷却器 (LC) 架构。它由两部分组成。第一部分是冷却头,基于最先进的冷却晶体 10%Yb:YLF 和像散多通腔。第二部分是低温冷却器光电子学,基于耦合到冷却头的冗余激光二极管和光纤。考虑到红外探测器的热负荷和低温恒温器内的寄生热通量,估算了小焦平面的冷却功率。然后考虑到晶体效率、热链接损耗和光电效率,估算激光冷却器所需的光功率和电功率。假设一个为期 5 年的 LEO 微卫星任务,则对电力系统(PCDU、太阳能电池阵列、电池)和热控制系统(热管、散热器)进行尺寸计算。增加了额外的质量裕度以考虑机械支撑结构。最后,分别将有效载荷和平台的质量和体积相加,以获得卫星级别的 SWaP 平衡,代表激光冷却器的整体影响。在相同的任务和平台假设下,对微型脉冲管冷却器 (MPTC) 架构重复了该研究。最后,对这两种架构进行了比较。结果表明,即使激光冷却器的功率要求很高,质量和内部体积的减小也使得小型卫星有效载荷成为可能。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
无线扫描仪旨在满足农业环境的严格要求,并提供快速,准确且易于共享图像。尺寸和重量至关重要,最终产品的测量仅为190 x 83 x 62mm,重量为850克。我们的团队将最佳解决方案识别为两个Panasonic 18650高容量的细胞。被称为锂离子杂化细胞,因为它也由镍和钴组成,该细胞具有高容量和良好的排放特征。将一氧化硅添加到这种新版本的Panasonic 18650牢房中可以提高电池的性能高达20%。设备中的电池寿命长达300分钟,并且可以从12V车内充电器或直流电源适配器中充电探针。该电池提供了较长的产品寿命,可提供多达500个充电周期。
关于 Forsee Power Forsee Power 是一家工业集团,专门从事可持续电动交通(轻型车、非公路用车、公共汽车、卡车和火车)智能电池系统。作为欧洲、亚洲和北美的主要参与者,该集团设计、组装和供应基于市场上最坚固电池的能源管理系统,并提供现场和远程安装、调试和维护。超过 4,200 辆公共汽车和 145,000 辆 LEV 配备了 Forsee Power 的电池。该集团还提供融资解决方案(电池租赁)和运输电池的二次使用解决方案。 Forsee Power 及其 750 名员工致力于可持续发展,该集团获得了领先的可持续发展评级机构 EcoVadis 的金牌。欲了解更多信息,请访问:www.forseepower.com | @ForseePower 联系人 Forsee Power Sophie Tricaud 企业事务和可持续发展副总裁 investor@forseepower,com
GaN 在家用电器中的应用势头强劲,未来四年将快速增长,预计 2023 年至 2029 年的复合年增长率将达到 121% [17]。在洗衣机、冰箱和其他家用电器等应用中采用 GaN 的驱动力之一是需要遵守能源法规并通过主要市场的能源标签进行差异化。能源标签根据家用电器的能耗对其进行评级,是消费者购买决策的关键因素。为了获得最高评级,制造商必须在保持高性能水平的同时降低能耗。一个潜在的解决方案是提高家用电器内部的电源转换效率。GaN 技术完全有能力在这一努力中发挥关键作用。GaN 提供的效率提升非常显著 [18]。例如,在 800 W 的应用中,GaN 可以实现 2% 的效率提升 [19],这可以帮助制造商获得令人垂涎的 A 级评级。这是通过 GaN 的更快切换能力实现的,因此,它更高效,并且因此满足了高效电机对降低损耗的性能需求。
抽象准确的功率损失估计对于有效的电力系统操作和计划至关重要。传统方法依赖于假设,导致不准确。这项研究采用了多层馈送神经网络(MFNN)来开发一个模型,该模型估计电力线中的真实和反应性损失。负载流技术用于获得训练多种模型的变量。调整神经元数并比较其他模型的性能指标后,选择了所需的模型。使用MATPOPTOR对118个BUS IEEE测试网络进行建模。Levenberg-Marquardt反向传播算法对生成数据训练了该模型。结果表明,25-神经元模型表现最好,在1000个时期达到了最小平方误差(0.00047543)。相关系数显示20个神经元和25个神经元模型的值为0.9999。分析确定了25个基于训练的模型是预测功率损耗的最准确的模型。据观察,25-神经元模型以1000个时期的最高相关系数(0.99999)达到了最佳性能(0.99999)和最小平方误差(0.00047543)。这项研究证明了ANN在估计传输线中功率损失方面的有效性。推荐的25个基于基于Neuron的训练有素的模型提供了研究模型的最佳预测,从而提高了电力系统效率和计划。关键字:神经网络,神经元,负载流,Levenberg-Marquardt,Newton Raphson
Table of Contents 1 Traditional Heater Control ...................................................................................................................................................... 2 2 Constant Power Heater Control ............................................................................................................................................. 2 3 Hardware Implementation ...................................................................................................................................................... 3 4 Software Implementation ....................................................................................................................................................... 5 5 Software Algorithm Flow Chart ............................................................................................................................................. 6 6 Results ..................................................................................................................................................................................... 7 7 Summary and Adaptations .................................................................................................................................................... 9 8 References .............................................................................................................................................................................. 9 Trademarks All trademarks are the property of their respective owners.
本文报告了两项 AlGaN / GaN 高电子迁移率晶体管 (AlGaN / GaN HEMT) 技术(器件“A”和器件“B”)的可靠性研究。对雷达应用的实际工作条件下承受应力的器件进行了故障分析研究。这些器件经过脉冲射频长期老化测试,11000 小时后射频和直流性能下降(漏极电流和射频输出功率下降、夹断偏移、跨导最大值下降、跨导横向平移以及栅极滞后和漏极滞后增加)。热电子效应被认为是钝化层或 GaN 层中观察到的退化和捕获现象的根源。光子发射显微镜 (PEM)、光束诱导电阻变化 (OBIRCH)、电子束诱导电流 (EBIC) 测量与这一假设一致。这三种技术揭示了沿栅极指状物的非均匀响应和不均匀分布,此外,在漏极侧或源极侧的栅极边缘上存在一些局部斑点。对这些斑点进行光谱 PEM 分析可识别出可能与位错或杂质等晶体缺陷有关的原生缺陷。对 AlGaN / GaN HEMT 的两种技术进行的原子探针断层扫描 (APT) 分析支持了这一假设。APT 结果显示存在一些化学杂质,如碳和氧。这些杂质在器件“A”中的浓度相对较高,这可以解释与器件“B”相比,该器件的栅极滞后和漏极滞后水平较高。
本文介绍了功率循环测试台的最新进展,该测试台旨在在低 Δ TJ(>10 9 次循环,10 至 20°C)下执行非常高的循环次数。该测试台基于桥式逆变器的操作,其中功率器件是要测试的模块,并在实际条件(切换)下对功率芯片进行功率循环,具有很高的灵活性。该设备可以执行功率循环常规测试(低频,0.01Hz 至 0.1Hz)以及使用由 PWM 调制调整的中频(10Hz 至 100Hz)负载电流引起的温度变化进行快速测试。简要介绍了测试台,并通过使用红外摄像机对 1200V-75A IGBT 模块进行的热测量说明了现在可用的功率循环模式。最后,介绍了低温波动(10°C 和 20°C)下的老化测试结果。
功率模块中的引线键合是封装中最薄弱的环节之一,通常会导致整个功率模块故障。与 CTE 不匹配相关的引线键合中的热机械应力会导致裂纹扩散到键合界面附近的区域。在本文中,键合过程后的扫描电子显微镜 (SEM) 分析清楚地显示了引线和芯片金属化界面附近的小晶粒和不同的纹理。为了提高引线键合的可靠性,建议在功率模块制造后进行热处理。热处理通过增加晶粒尺寸、降低位错密度和合并引线和金属化的晶粒,对键合区域产生积极影响。此外,已进行的功率循环显示,与由未经处理的相同(交付时)功率 IGBT 模块组成的参考产品相比,经过热处理的功率模块的使用寿命有所增加。