摘要 — 开发了一种基于惠更斯源的创新方法来调节微波传输线系统中功率流动的方向,并通过测量进行了验证。惠更斯源中电流和磁流之间的相位差可用于精细控制波传播幅度的比率,从而使功率沿传输线以相反的方向流动。通过矩形波导作为传输线系统的场分布以及惠更斯源驱动的传输线电路模型中的电压和电流,阐明了工作原理。分别用电流源和磁流源激励的传输线电路模型以及它们的平衡组合提供了一种精确的方法来定量展示惠更斯源功率流的可调谐性。在微波矩形波导中实施了概念验证实验以验证理论分析。测量结果与模拟值高度一致,表明所报告的方法可实现宽带操作和大动态方向功率比,这有利于设计多功能电磁设备和系统。
学习障碍 (LD) 是一种神经处理障碍,会导致信息处理和理解障碍。LD 不仅影响学业成绩,还会影响与家人、朋友和同事的关系。因此,在学年之前检测出儿童的学习障碍非常重要,可以避免焦虑、欺凌和其他社交问题。本研究旨在根据从脑电图 (EEG) 捕获的情绪实现学习障碍检测,以识别自闭症谱系障碍 (ASD)、注意力缺陷多动障碍 (ADHD) 和阅读障碍的症状,以便尽早诊断并协助临床医生评估。结果显示,ASD 儿童的几种症状包括 Alpha 功率低(Alpha-Beta 测试 (ABT) 功率比和 ASD U 形图),ADHD 儿童的 Theta-Beta 测试 (TBT) 功率比高,而阅读障碍的左心室 Theta 功率高于右心室 Theta 功率 (LRT)。可以得出结论,本研究提出的学习障碍检测方法适用于 ASD、ADHD 和阅读障碍的诊断。
人工控制动物运动有可能同时解决软体机器人长期以来在驱动、控制和功率要求方面的挑战。机器人对运动的操纵还可以解决以前无法解决的生物生物学问题,否则这些问题仅限于观察自然发生的行为。在这里,我们展示了一种生物混合机器人,它使用机载微电子设备来诱导活水母游泳。测量表明,通过以比自然行为更快的最佳频率范围驱动身体收缩,可以大大增强推进力。游泳速度可以提高近三倍,而动物的代谢消耗仅增加两倍,微电子设备的外部功率输入为 10 mW。因此,这种生物混合机器人每单位质量使用的外部功率比文献中报道的其他水上机器人少 10 到 1000 倍。这种能力可以扩大生物混合机器人相对于自然动物的性能范围,用于海洋监测等应用。
ATM – 假定温度法 CRM - 机组资源管理 CCD - 光标控制装置 CCS - 光标控制选择器 CVR - 驾驶舱语音记录器 CDU - 控制显示单元 CG - 重心 CG MAC% - 以 % 表示的 CG 平均气动弦 EAFR - 增强型机载飞行记录器 EICAS - 发动机指示和机组警报系统 EFB - 电子飞行包 FMC - 飞行管理计算机 固定降低率 – TO/TO1/TO2 FLAR - 飞行日志和飞机释放 HUD - 平视显示器 MFD - 多功能显示器 MFK - 多功能键盘 MCP - 模式控制面板 MAC - 平均气动线 OPT - 机载性能工具 OMA - 操作手册 PF - 飞行飞行员 PM - 飞行员监控 PIC- 机长 QRH - 快速参考手册 TPR - 涡扇功率比 TOW - 起飞重量 V1 - 起飞决策速度 Vr - 旋转速度 V2 - 起飞安全速度 Vref - 参考速度 Vmu -最小脱杆速度 Vzf - 零襟翼机动速度 ZFW - 零燃油重量
找到正确的电池尺寸对于项目的财务成功至关重要。许多研究利用复杂的模拟来确定最佳电池尺寸。在其他项目中重复使用此类优化的结果也很困难。本文通过引入因子 β 作为能量功率比,提出了一个简单的技术经济模型,以便快速评估建筑一体化电池储能系统 (BI-BESS) 的可行性,并且可以应用于使用相同关税结构且独立于建筑负荷曲线的所有商业建筑。由于电池的能量和功率是耦合的,因此定义 β 可以同时解决这两个指标,从而获得高精度。为了验证结果,使用了基于马来西亚关税结构的商业建筑的负荷曲线,并借助成本效益比 (BCR) 和简单的峰值削减迭代模型,从提出的技术经济模型中获得电池的最佳尺寸。结果表明,在找到最佳 BCR=1.08 后,最佳电池尺寸为 66.84 kWh。然而,考虑到回收期内的市场利益,安装 BESS 的经济可行性评估为 BCR= 1.7,高于我们的结果。因此,评估了电池成本降低的影响。
摘要:介绍了顺序负载调制平衡放大器(SLMBA)的基本理论,分析了其有源负载调制的工作原理。为了进一步提高SLMBA的性能,提出了一种有别于传统耦合器设计的耦合器与功率放大器(PA)联合设计的方法。该耦合器-PA联合设计方法根据SLMBA的回退点和饱和点,可以使耦合器和三通PA的工作状态更接近实际情况,提高了SLMBA的整体性能。然后通过预设的输出功率回退(OBO)10 dB确定控制PA与平衡PA的最大输出功率比,通过平衡PA的负载调制阻抗走线确定相位补偿线。为了验证所提方法,设计了工作在1.5~2.7 GHz(57%相对带宽)的SLMBA。版图仿真结果表明该器件饱和输出功率达到40.7~43.7 dBm,小信号增益为9.7~12.4 dB,饱和点和10 dB OBO点的漏极效率分别为52.7%~73.7%和44.9%~59.2%。
的手性和混乱都根植于对称性的破裂中,在基本和应用物理学中一直很有趣。尽管他们共同基础,但这两个基本概念在很大程度上是独立发展的,在交叉路口留下了未开发的潜力。在这里,我们报告了混乱诱导的光学手性,并在量子微叠剂中建立了这些基本现象之间的第一个直接联系。我们揭示了混乱的光动力学打破了时间反转对称性,从而在反推销腔模式之间产生了局部不平衡的强度。通过将手性变压器整合到微腔中,这种局部不平衡被转化为全球性手性,从而产生高度方向的娱乐内激光场,并具有测量的counterpropagation功率比超过10 dB。值得注意的是,这种混乱引起的手性表现出极大的鲁棒性,可以使变压器位置和跨不同空腔边界形状之间的变化具有多种变化,超过了传统方法的多功能性,从而为创新的手势光电设备,单向量子网络和超越。
引言大规模MIMO被认为是在现代无线通信系统(如5G NR及更高版本)中实现所需数据速率、带宽和可靠性的关键技术[1][2]。在基站(BS)中使用大型天线阵列(NT>64)可以显著提高信噪比(SNR),并通过指向特定位置的窄波束实现空间分集传输[3]。这两个特性使得在24至52 GHz的较高频带上进行毫米波通信变得可行[4]。事实上,它们是克服频谱较高部分传播路径损耗增加的有效方法[5][6]。然而,由于射频(RF)链数量的增加,大量天线也意味着更严格的硬件要求,从而导致更高的功耗[5]。从这个意义上讲,提高系统能源效率(EE)已成为主要关注点和活跃研究的重点。一般而言,大规模 MIMO 系统中的 EE 可以通过降低信号处理复杂度及其相关功耗,或通过提高硬件资源利用率 1 [7] 来改善。根据这一标准,[8] 和 [9] 提出了一种联合优化时域波束控制和峰均功率比 (PAPR) 降低的方法,其中计算复杂度显著降低,同时提高了功率放大器效率。然后,
大型语言模型(LLMS)通过利用其语言理解和文本生成功能来显示机器人应用,尤其是任务计划的重要潜力。然而,在诸如家用机器人技术之类的应用中,这些模型的个性化仍然存在着重要的差距。例如,LLM计划可能会发现执行需要个性化的任务,例如决定基于特定的家庭喜好将杯子放在厨房中的位置。我们介绍了LLM-Persyalize,这是一个新颖的框架,旨在个性化家庭机器人的LLM计划。llm-persyalize使用llm计划在多房间,部分观察的家庭环境中执行迭代计划,并利用从本地观察结果动态构建的场景图。要将LLM计划者个性化对用户偏好,我们的优化管道整合了模仿学习和加强自我训练。我们评估了LLM-个性化家政人员,这是一个具有挑战性的现实世界3D基准,用于家庭重排,表明,成功率比现有的LLM计划者增长了30%以上,这表明与人类偏好相符。
抽象的热存储是储存过多热量的重要设备,尤其是对于水加热系统。目前的工作提出了一项初步研究,以最大限度地利用光伏储存,作为充电储热材料的主要来源。评估表明该概念是可行的,可以使用加热元件将光伏的输出功率直接转换为热量。功率比相当高(高达38.6%),导致热吸收材料(水)的最高温度增加到43.2°C。使用合适的相过渡材料的最终评估表明,稳定相行为对于最大化材料的温度曲线至关重要。它是使用稳定的甲状腺癌酸来实现的,该酸在54.2°C的温度下显示出瞬态相变,从而减少了在放电阶段平均温度速率0.54°C/min的热量损失的可能性。这一发现证明了所提出的概念是适用的,同时可以进行进一步的改进,以调整实际系统的光伏和储罐布置的合适功率输出。尽管如此,结果预计将加速将光伏的利用作为可靠的太阳可再生技术。