摘要:在设计用于超大规模集成 (VLSI) 系统的数字电路时,降低功耗方面的能效考虑是一个重要问题。量子点细胞自动机 (QCA) 是一种新兴的超低功耗方法,不同于传统的互补金属氧化物半导体 (CMOS) 技术,用于构建数字计算电路。开发完全可逆的 QCA 电路有可能显著降低能量耗散。多路复用器是构建有用数字电路的基本元素。本文介绍了一种具有超低能耗的新型多层完全可逆 QCA 8:1 多路复用器电路。使用 QCADesigner-E 2.2 版工具模拟了所提出的多路复用器的功耗,描述了 QCA 操作背后的微观物理机制。结果表明,所提出的可逆 QCA 8:1 多路复用器的能耗比文献中之前介绍的最节能的 8:1 多路复用器电路低 89%。
在各种 ADC 架构中,FLASH ADC 被证明是高性能 ADC。所提出的 ADC 由基于多路复用器的编码器、开环比较器和电阻梯形网络组成。所提出的 ADC 采用 90nm CMOS 技术进行模拟。所提出的 ADC 的主要优点是静态功耗低。这是通过将基于多路复用器的编码器集成到 Flash ADC 中实现的。所提出的 ADC 的功耗为 26.65µw,输入电压为 1V,频率为 100MHz。设计的 Flash ADC 可用于高速应用。
1 简介 4 2 特性 5 3 开发环境 8 3.1 系统环境 8 3.2 开发选项 8 3.2.1 CMSIS 包 8 3.2.3 MM IoT SDK 8 3.2.4 PlatformIO + MM IoT SDK 9 4 入门 10 4.1 默认跳线配置 11 4.2 AP 设备设置 12 4.2.1 更改信道、带宽、DTIM 周期 16 4.3 软件示例 17 4.4 查看 MM6108-EKH05 演示 HTTP 服务器 18 5 软件开发 21 5.1 安装 CMSIS 包 21 5.2 构建和运行示例应用程序 24 5.2.1 UART 输出 30 5.3 更改示例应用程序 31 5.4 更改示例配置 33 5.5 在 SPI 和 SDIO 之间切换 34 5.6 更改网络堆栈38 6 硬件布局和配置 40 6.1 电源选择 40 6.2 使用外部调试器/编程器 41 6.3 更改 VFEM 电压 42 6.4 在 SDIO 和 SPI 之间切换 43 6.5 在 SMA 和 U.FL 连接器之间切换 44 6.6 断开传感器 45 7 功耗测量 46 7.1 功耗测量点 46 7.1.1 总体结构 46 7.1.2 HaLow 和 VFEM 47 7.1.3 整个系统功耗 48 7.2 功耗测量程序 49
在设计ECG系统时,主要问题之一是功耗,尤其是用于移动和可穿戴设备。本文提出了DTLC适用于使用具有负面偏置的双尾比较器的低端和高端应用程序,以改善使用Mentor图形建模的ECG信号监测系统。使用180nm CMOS技术的EDA工具集成的电路设计,以0.8V的电源提高了电力消耗,而不会下降汽车的性能。参数(包括功耗和功耗产品(PDP))以20 kHz的时钟频率从1.33μW降低到12.5 PW,而PDP降低到27°C时的0.251 AJ,可以改善功耗(PDP)。这些优化使所提出的比较器非常适合低功率,高性能ECG系统,尤其是在便携式和可穿戴的医疗设备中,在这些设备中,作为资源利用和交付的精度是重要因素。设计为公司的数字过渡提供了一个声音平台。心脏信号监测中的类似物到数字转换器(ADC)作为客户对医疗行业中节能声音元素的需求的增长。通过这种方式,功率释放效率得到提高,并且过多的能耗受到限制。根据准确性要求,拟议的比较器可以视为最适合现代心电图应用程序的比较。
Ranovus Inc. (“RANOVUS”) 今天在北美领先的光纤网络盛会 OFC 2021 上宣布,通过引入 Odin™ Analog-Drive CPO 2.0 架构,下一步将降低超大规模数据中心运营的功耗和总体成本。Ranovus 利用与领先的多太比特互连解决方案提供商 IBM Inc. (“IBM”)、TE Connectivity (“TE”) 和 Senko Advanced Components, Inc (“SENKO”) 的战略合作,为数据中心创建了第二代 CPO 2.0 配置。共封装光学器件 (CPO) 是一种创新方法,可在单个封装组件中为以太网交换机和 ML/AI 硅片提供 nx100Gbps PAM4 光纤 I/O,从而显着降低整个系统的成本和功耗。随着数据中心流量在人工智能和机器学习的推动下以前所未有的速度增长,网络基础设施必须在保持其总功耗和占地面积的同时扩大容量。 2020 年 3 月宣布的战略合作
目的。脑机接口 (BMI) 具有恢复运动功能的潜力,但目前受到电极数量和长期记录稳定性的限制。如果在扩展到数千个微尘时能够将功耗保持在安全水平内,那么这些挑战可以通过使用自由浮动的“微尘”以无线方式传输记录的神经信号来解决。在这里,我们评估了一种用于基于红外 (IR) 微尘的脉冲间隔调制 (PIM) 通信方案,旨在降低无线数据速率和系统功耗。方法。为了测试 PIM 有效传递神经信息的能力,我们在非人类灵长类动物的实时闭环 BMI 中模拟了该通信方案。此外,我们对基于 IR 的 1000 个微尘系统进行了电路模拟,以计算通信准确性和总功耗。主要结果。我们发现每通道 1kb/s 的 PIM 与真实发放率保持很强的相关性,并且与传统有线系统的在线 BMI 性能相匹配。闭环 BMI 测试表明,最小 30 毫秒的滞后可能会对性能产生重大影响。最后,与其他 IR 通信方案不同,PIM 在功率方面是可行的,并且可以使用 3mW 的功率在 1000 个通道的接收器上准确恢复神经数据。意义。这些结果表明,基于 PIM 的通信可以显著降低无线微尘的功耗,从而为高性能 BMI 提供更高的通道数。
特刊:用于人机接口应用程序应用程序范围和主题的边缘计算的超功率技术:可穿戴设备是一种不断增长的技术,它在医疗保健应用和人机界面中占据了很大的空间。该技术可以舒适地戴在身体上,并允许用户监视各种活动/生物识别技术并确定人体状态。,尽管使用了广泛的应用,但可穿戴设备仍面临着各种挑战,例如低计算能力,高功耗,要传输的大量数据以及无线链接的数据速率较低。为了提高能源效率并确保基于电池的持久操作,应将传感器输出的处理移至传感器旁边的边缘。通过在模拟和数字域中结合边缘计算,智能传感器和低功率电路,可以设计具有极高能源效率的超功率技术。在本期特刊中,我们希望在管道的任何方面收集有关超功率技术的文章,因为这将对下一代挑战和与Edge Computing有关的可穿戴医疗保健应用程序相关的下一代挑战和未来方向产生深远的影响。对于旨在减少功耗的新兴技术的评论/观点,对电路和系统最新进展以及旨在减少功耗的评论/观点的原始研究手稿受到欢迎。 感兴趣的主题包括但不限于:对电路和系统最新进展以及旨在减少功耗的评论/观点的原始研究手稿受到欢迎。感兴趣的主题包括但不限于:
集电极功耗 PC 150 mW 额定折减系数 P CD 3.1 mW/°C 集电极电流 IC 50 mA 集电极发射极电压 V CEO 80 V 发射极集电极电压 V ECO 7 V 总功耗 Ptot 200 mW 隔离电压 Viso 3750 Vrms 工作温度 Topr -55~+110 °C 储藏温度 Tstg -55~+125 °C 焊接温度 Tsol 260 °C
功率:CV 2 fx(数据量)问题 ● 将数据从像素移动到外围的总功耗:1 pJ/bit(~ 5mm 距离) ● 将数据移出芯片的总功耗:> 0.1 nJ/bit 最小化 C,V ● 3D 集成(高密度、低电容互连) ● 低压信号减少数据 ● 通常仅对探测器上的电子设备进行零抑制 – 适用于稀疏数据 HL LHC:更高的粒度、更高的占用率、更高的精度 => 需要新方法
执行摘要 本报告讨论了 2015 年 9 月至 10 月期间在位于香港何文田窝打老道 71 号的汇丰银行零售分行安装和试点测试 COOL NOMIX ® 节能技术的结果。该报告是应仲量联行 (JLL) 代表其客户汇丰银行的要求编写的。JLL 是一家全球性房地产组织,在 80 多个国家/地区设有 230 多个公司办事处。其主要关注三个地理区域:美洲;欧洲、中东和非洲 (EMEA);以及亚太地区。汇丰银行窝打老道分行配备了三台大金可变制冷剂流量 (VRV) 机组,为 29 个室内风机盘管提供服务。每个 VRV 的额定功率为 20 HP,整体基础设施使用 TMAC 楼宇管理系统 (BMS)。这些 VRV 机组为分行的 3 个不同部分提供冷却,即柜台服务、后台办公室和卓越理财银行业务。由于物理访问困难,只能在 29 台大金生产的室内风机盘管机组中的 25 台上安装 COOL NOMIX ®。在整个试点计划期间,使用 Efergy e2 Classic 无线功率计测量三台 VRV 机组的功耗,从而测量 VRV 特定的功耗。试点以两周的基线开始,在此期间,在未运行 COOL NOMIX ® 的情况下从 9 月 8 日星期二到 9 月 21 日星期一收集功耗数据。在这两周之后,COOL NOMIX ® 的安装工作立即开始,并于 9 月 26 日星期六完成。9 月 29 日星期二,COOL NOMIX ® 的两周运行期开始,并持续到 10 月 12 日星期一。在此期间,还收集了功耗数据。基线期间和运行 COOL NOMIX ® 时的空调功耗综合结果显示在下表中。