摘要:尽管顺铂是一种化学治疗剂,但其应用仍受到限制剂量副作用的影响,并且对癌细胞缺乏选择性。研究人员可以利用铂(IV)氧化态的促药性质来克服这些问题,并通过用特定的受体在肿瘤细胞膜中过表达的金属中心的配位球体(例如,碳水化合物)。在本文中,我们报告了基于顺铂支架的四种新型碳水化合物模化的PT(IV)Pro-prougs的合成,以及它们针对骨肉瘤(OS)的生物学活性,骨肉瘤(OS)是一种恶性肿瘤,这是一种恶性肿瘤,在青少年和年轻人中最常见。使用铜催化的叠氮化物 - 烷基环加成(CUAAC)化学,碳水化合物靶向载体和PT支架是连接的,这是轻度和稳健的反应条件的代名词。使用多核1D-2D NMR(1 H,13 C和195 pt),IR,HR-MS,Elem对新型复合物进行表征。分析和简历。讨论了2D和3D的细胞毒性以及OS细胞系以及非癌性人类胎儿成骨细胞(HFOB)的细胞形态研究。
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。
摘要:我们报告了一项系统研究,该研究对几种新型的Cu螯合夹式磷脂人工金属核酸酶(AMN)的杂种,以及三链DNA的序列 - 特异性裂解。这些AMN-TFO混合动力车的合成是基于在关键步骤中应用炔烃环加成单击反应(CUAAC)的应用。AMN通过5'-或3'-End或TFO伸展中间的不同接头连接。与富含靶嘌呤的序列有效地形成了三种杂种,并研究了其Cu复合体,以在抗坏血酸作为还原剂的情况下裂解dsDNA的能力。在所有情况下,我们都研究了AMN-TFO的性质和长度,抗坏血酸的时间,条件和量的影响,并发现了最佳的偶联物和程序,这些结合物和程序对目标序列进行了相当有效的(高达34%)的裂解,同时呈现非目标DSDNA完整。仅在一种情况下,在一个情况下发现了页面上裂解的足迹,这意味着裂解不会以单核苷酸精度进行。另一方面,这些AMN-TFO杂种可用于选择性降解目标dsDNA序列。这种设计的未来改进可能会提供更高的分辨率和选择性。
摘要:氨基硅烯分子(HSiNH 2 ,X 1 A ′) 是不饱和氮硅烯的最简单代表,它是在单次碰撞条件下通过气相基元反应形成的,反应涉及硅基自由基(SiH)和氨(NH 3 )。反应由硅基自由基无势垒加成到氮的非键合电子对上引发,形成 HSiNH 3 碰撞复合物,然后通过从氮原子中失去氢原子,单分子分解为氨基硅烯(HSiNH 2 )。与等价氨基亚甲基卡宾 (HCNH 2 , X 1 A ′ ) 相比,通过用硅取代单个碳原子,对等价甲亚胺 (H 2 CNH) − 氨基亚甲基 (HNCH 2 ) 和氨基硅烯 (HSiNH 2 ) − 硅亚胺 (H 2 SiNH) 异构体对的稳定性和化学键产生了重大影响;例如,卡宾与硅烯的热力学稳定性逆转了 220 kJ mol − 1。因此,发现第十四主族元素硅的等价性与原子碳几乎没有相似性,不仅对反应性而且对热化学和化学键也表现出显着影响。
广义上讲,将三氟甲基引入(杂)芳族化合物有三种通用方法。“程序化三氟甲基化”是一种流行的方法,它利用预先存在的功能性手柄,例如(伪)卤化物或硼酸盐,将 CF 3 基团传递到底物上的精确位置。3 另一种策略是 C − H 基团的“固有三氟甲基化”,通常通过母体(杂)芳烃与三氟甲基自由基的反应进行。4 最近受到较少关注的最后一种策略是使用一种或多种 CF 3 取代的前体进行(杂)苯并环化。具体而言,这种类型的环加成反应与前面概述的两种策略是互补的,因为 CF 3 的最终位置既不是由现有功能组的存在决定的,也不是由母体(杂)芳烃的固有偏好决定的。然而,缺点是这些反应通常需要苛刻的条件并且产生具有较差区域控制的产品。 5 我们在此报告,硼导向环加成 6 可以在温和条件下快速、区域控制地合成氟烷基取代的(杂)芳烃,从而得到可以通过 C − B 键进一步精制的产物(方案 1)。■ 结果与讨论
组装体的组装不仅由光活性分子本身的分子结构决定,还由分子空间排列方式决定。13 – 15具有明确堆积和分子间相互作用的有机超分子晶体是研究超分子组织及其控制和操作的理想体系。16 – 18因此,如何提供具有理想光响应行为的有机超分子晶体引起了化学和材料科学的广泛关注。分子间[2 + 2]光环加成反应,特别是固态的光二聚化,极易受到分子空间排列的影响。预计只有当反应性p-二聚体中的两个单体尽可能平行排列,并且它们的接近度在4.2 ˚A以内时才会发生。19 – 21此类拓扑化学反应具有迷人的能量转移,能够快速有效地将光转化为化学能和动能。 18,22一方面,晶格原子的空间运动会在周围的p-二聚体中产生局部应力,使晶体发生变形。23,24例如,Naumov和Vittal报道了基于[2+2]光环加成反应的智能分子晶体,实现了弯曲、跳跃、滚动、光突显等多种光机械动态行为。25-27另一方面,
受控/活性自由基聚合 (CLRP) 技术被广泛用于合成先进且受控的合成聚合物,用于化学和生物应用。虽然自动化长期以来一直是提高生产率以及合成/分析可靠性和精度的高通量 (HTP) 研究工具,但 CLRP 的氧不耐受性限制了这些系统的广泛采用。然而,最近出现了氧耐受性 CLRP 技术,例如氧耐受性光诱导电子/能量转移 - 可逆加成 - 断裂链转移 (PET - RAFT)、RAFT 的酶脱气 (Enz-RAFT) 和原子转移自由基聚合 (ATRP)。本文展示了如何使用 Hamilton MLSTARlet 液体处理机器人来自动化 CLRP 反应。合成过程使用 Python 开发,用于自动化试剂处理、分配序列和在 96 孔板中创建均聚物、随机异聚物和嵌段共聚物所需的合成步骤,以及聚合后改性。使用这种方法,展示了高度可定制的液体处理机器人和耐氧 CLRP 之间的协同作用,以实现 HTP 和组合聚合物研究的高级聚合物合成自动化。
对形成碳键的新方法的探索,导致结构新颖的桥接化合物的合成对科学界而言至关重要。许多桥接化合物是众所周知的天然产物和生物活性支架的部分结构,并且也是许多反应中的剂量[1](图1)。桥接分子的结构唯一性,例如它们的设计,异常对齐和诱人的化学反应,具有较小的桥梁群体鼓励我们检查其独特的有机,猜想和光谱研究[2]。设计一种连贯的策略来访问桥接化合物的综合策略的令人震惊的综合挑战,该化合物具有非保障的热力学稳定性,在合成化学家中产生了好奇心[3]。在桥位的杂原位的紧张的杂循环部分的合成是一项迷人的合成工作,由于兴高采烈以及许多有用的特性,与碳环糖化合物相比,由于兴高采烈以及许多有用的特性,它一直在获得大量的cur现利息[4]。在1928年,奥托·迪尔斯(Otto Diels)教授和他的学生库尔特·奥尔德(Kurt Alder)报告了关于合成的[4Þ2]环加成反应的开创性工作
杂质(Cl-) ppm 2.1 描述 Dow 硅胶封装材料(例如 DOWSIL™ ME-4131 透明封装材料)旨在满足微电子和光电子封装行业的关键标准,包括优异的附着力、高纯度、防潮性以及热稳定性和电稳定性。这些材料具有低杨氏模量,可以吸收封装内部 CTE 不匹配引起的应力,从而保护芯片和键合线。 如何使用 Dow 封装材料与市售设备和行业标准工艺兼容。封装材料可以进行分配、印刷或液体注塑成型。可以在标准强制空气对流烤箱或许多其他烤箱配置中完全固化以实现最终特性。 兼容性 某些材料、化学品、固化剂和增塑剂会抑制加成固化粘合剂的固化。其中最值得注意的是:有机锡和其他有机金属化合物、含有机锡催化剂的硅橡胶、硫、多硫化物、聚砜或其他含硫材料、不饱和烃增塑剂和一些焊剂残留物。如果基材或材料可能引起固化抑制,则建议进行小规模兼容性测试以确定在给定应用中的适用性。在可疑基材和固化凝胶之间的界面处存在液体或未固化产品表明不兼容和固化抑制。操作注意事项
SIDBI 的使命是“促进和加强对中小微企业的信贷流动,解决中小微企业生态系统中的资金和发展差距”。SIDBI 的愿景是“成为满足中小微企业金融和发展需求的单一窗口,使其强大、充满活力并具有全球竞争力,将 SIDBI 品牌定位为首选的客户友好型机构,并通过现代技术平台提高股东财富和最高企业价值”。为了实现这一目标,SIDBI 积极与银行、SFB、NBFC、MFI 和新时代金融科技公司合作进行间接贷款,专注于为中小微企业提供融资的乘数效应/扩大覆盖范围。SIDBI 还通过直接贷款对工业集群进行战略干预,旨在通过使用可通过信贷交付生态系统扩大规模的可证明和创造性贷款产品来弥补中小微企业部门当前的信贷缺口。SIDBI 还通过其基金中的基金计划帮助初创企业,促进印度创业文化的发展。除此之外,SIDBI 还通过信贷加成举措,促进创业,帮助新兴企业实现中小微型企业部门的全面发展,并发挥政府中小微型企业导向计划的联络机构等作用。