和进一步经历了同性恋,导致多价相互作用和LLP的诱导。VP16被募集到CMV最小启动子提供的转录起始位点,并诱导报告基因表达。(b)调整转化因子冷凝物的材料特性。要修改凝结物材料特性,采用了两种策略:首先,通过将CRY2换成Cry2 Olig,从而增加了相互作用的价值,而Cry2 Olig构成了高阶寡聚物;其次,通过共转染编码融合到麦克里(可视化)和fus n和nLS的cry2 olig的结构来提高价值和浓度。与CRY2-EYFP-FUS N -VP16或CREY2 OLIG -EYFP-FUS N -VP16构建体(黄色和绿色数据点)共转染了编码CIBN-TER和基于TETO 4的SEAP报告基因。可选地,添加了编码Cry2 Olig -MCH -MCH -FUS n -nls的构造(以2:1的质粒量比为2:1相对于含VP16的构建体,红色和黑色数据点)。在进行FRAP分析之前,将细胞在黑暗中培养32小时。蓝光照明10分钟后(2.5 µmol m -²S-1)开始。 图像在液滴漂白之前直接显示出反应性核。比例尺= 5 µm。 图显示了根据n≥7凝结物回收曲线的非线性拟合计算出的移动部分的平均值和单个值(请参见右图)。 使用学生的t.test(*=p≤0.05; **** =p≤0.0001)进行成对比较。。图像在液滴漂白之前直接显示出反应性核。比例尺= 5 µm。图显示了根据n≥7凝结物回收曲线的非线性拟合计算出的移动部分的平均值和单个值(请参见右图)。使用学生的t.test(*=p≤0.05; **** =p≤0.0001)进行成对比较。
mTORC1 和 AMPK 是相互拮抗的营养和能量状态传感器,与许多人类疾病有关,包括癌症、阿尔茨海默病、肥胖症和 2 型糖尿病。社会性变形虫 Dictyostelium discoideum 的饥饿细胞会聚集并最终形成由柄细胞和孢子组成的子实体。我们关注如何实现细胞命运的这种分歧。在生长过程中,mTORC1 高度活跃,而 AMPK 相对不活跃。饥饿时,AMPK 被激活而 mTORC1 被抑制;细胞分裂被阻止并诱导自噬。聚集后,少数细胞(前柄细胞)继续表达与聚集期间相同的发育基因集,但大多数细胞(前孢子细胞)切换到前孢子程序。我们描述了表明过表达 AMPK 会增加前柄细胞比例的证据,抑制 mTORC1 也会增加前柄细胞的比例。此外,刺激细胞内酸性区室的酸化同样会增加前柄细胞的比例,而抑制酸化则有利于孢子途径。我们得出结论,细胞分化的前柄途径和前孢子途径之间的选择可能取决于 AMPK 和 mTORC1 活性的相对强度,这些活性可能受细胞内酸性区室/溶酶体 (pHv) 的酸度控制,pHv 低的细胞具有高 AMPK 活性/低 mTORC1 活性,pHv 高的细胞具有高 mTORC1/低 AMPK 活性。深入了解这种转换的调节和下游后果应该会提高我们对其在人类疾病中潜在作用的理解,并指出可能的治疗干预措施。
摘要 哺乳动物细胞天生就能够感知细胞外环境信号并根据需要激活复杂的生物功能。合成生物学的进步使得安装额外的功能成为可能,这些功能可以使细胞感知定制生物分子的存在并根据需要提供定义的输出。当植入/注入患者体内时,这种工程细胞可以作为体内“医生”,诊断疾病状态并在必要时产生和递送治疗分子。构建此类治疗诊断细胞的关键是开发一系列传感器系统,用于检测各种细胞外环境线索,这些线索可以重新连接到自定义输出。在这篇综述中,我们介绍了用于设计传感器系统以检测可溶性因子和检测特定细胞接触的最先进的工程原理,并讨论了它们通过按需提供适当的治疗功能在治疗难治性疾病中的潜在作用。我们还讨论了这些新兴技术面临的挑战。
图1 - 反思积分控制器和强大的完美适应。a)反思积分控制器是一个负反馈回路(闭环),其中组成型表达的激活剂物种X驱动了感兴趣的Z(输出)的表达。z驱动抑制剂y的表达,该抑制剂y结合并抑制X。当z的浓度变化时,y也会导致x以相反的方式变化(例如如果z的浓度降低,则活性x将增加,反之亦然)。该机制使反思积分控制器在扰动(红线)面对面的Z(实心橙色线)的浓度(固体橙色线)(红线),从而使Z恒定随着时间的推移保持恒定。在开放环配置中,Z是从组成型启动子直接表达的,如果由于外部扰动(红线)而其浓度降低(红线),其浓度随着时间的流逝不会恒定(虚线橙色线)。b)我们实施中的物种本身就是转录激活剂,并且可以通过将发光萤火虫荧光素酶(FLUC)放置在由Z驱动的启动子下,或直接将EGFP Pluorescent Reporter融合到Z本身的启动子中,可以间接地跟踪其浓度。
最近已经开发了一种用于确定双向DNA复制起源的物理位置的一般方法,并证明能够正确识别Simian病毒40复制的起源(L. vassilev和E. M. Johnson,Nucleic Acids,Res。17:7693-7705,1989)。该方法比以前报道的其他方法的优点是,它避免了使用代谢抑制剂的使用,细胞同步的需求以及对原点序列的多个副本的需求。将这种方法应用于含有未扩增的单拷贝二氢叶酸还原酶基因基因座的非扩增,单拷贝的卵巢凝胶的应用显示,DNA的复制在大约2.5千千公斤的起始区域开始,大约2.5个千千万酶,长期以来,长期以来,长期以来,大约17千千千万的基础与DHFR Gene的下降序列相结合,以前是早期复制的。这些结果证明了该映射方案用于识别复制的celular起源的实用性,并建议在正常和放大的DHFR基因座中使用相同的cedlular起源。
巨型噬菌体(例如铜绿假单胞菌)具有抗菌剂的潜力,也是揭示基本噬菌体生物学的模型。目前,由于蛋白质的“噬菌体核”结构,这两种追求都受到缺乏基因工程工具的限制,该结构可保护DNA靶向DNA靶向CRISPR-CAS工具。为了提供用于DNA巨型噬菌体的逆转苯二酚工具,我们将同源重组与靶向RNA的CRISPR-CAS13A酶相结合,并使用了抗Crispr基因(ACRVIA1)作为可选标记。我们表明,此过程可以插入外源基因,删除基因并为μkz基因组添加荧光标签。内源性GP93的荧光标记表明,它是用噬菌体DNA弹出的,而小管蛋白样蛋白phuz的缺失令人惊讶地对噬菌体爆发尺寸产生了适中的影响。还实现了抗DNA靶向CRISPR-CAS系统的另外两个噬菌体的编辑。靶向RNA CAS13A具有成为一种通用遗传编辑工具的巨大前景,可以实现对未知功能的噬菌体基因的系统研究。
摘要:叶绿体是通过蓝藻类共生体与宿主内共生进化而来的光合细胞器。许多研究试图分离完整的叶绿体来分析其形态特征和光合活性。尽管一些研究将分离的叶绿体引入不同物种的细胞中,但其光合活性尚未得到证实。在本研究中,我们从原始红藻 Cyanidioschyzon merolae 中分离了具有光合活性的叶绿体,并通过共培养将其整合到培养的哺乳动物细胞中。整合的叶绿体保留了其细胞内囊体的结构,并保持在细胞质中,被细胞核附近的线粒体包围。此外,整合的叶绿体在整合后至少 2 天内在培养的哺乳动物细胞中保持光系统 II 的电子传递活性。我们的自上而下的基于合成生物学的方法可以作为创造人工光合动物细胞的基础。
目前,Cas9 和 Cas12a 系统被广泛用于基因组编辑,但它们精确产生大片段染色体缺失的能力有限。I-E 型 CRISPR 介导广泛和单向的 DNA 降解,但迄今为止,控制 Cas3 介导的 DNA 缺失的大小已被证明是难以捉摸的。在这里,我们证明了 Cas9 的内切酶失活 (dCas9) 可以精确控制哺乳动物细胞中 Cas3 介导的大片段缺失。此外,我们分别报告了使用 CRISPR/Cas3 和 dCas9 控制的 CRISPR/Cas3 在小鼠中消除 Y 染色体和精确保留 Sry 基因。总之,dCas9 控制的 CRISPR/Cas3 介导的精确大片段缺失为通过染色体消除建立动物模型提供了一种方法。该方法也有望成为治疗涉及额外染色体的片段突变或人类非整倍体疾病的潜在治疗策略。
材料:动物细胞生物技术 - 国会干细胞 - 国会干细胞组织组织工程细胞系干细胞组织工程纤维素 - 生物技术 - 恭喜蜂窝套管 - 恭喜lignéesLignées纤维素纤维素纤维素纤维化纤维素souches souchesgénietissulaire science-化学 - 工业和技术。技术与工程 - 化学与生化。组织工程。细胞系。动物细胞生物技术。干细胞。