(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 9 月 5 日发布。;https://doi.org/10.1101/2023.09.04.556252 doi:bioRxiv preprint
中尺度区域,不能捕捉到运动系统的全部信息内容。在这项工作中,我们记录了 8 名癫痫患者的颅内脑电图,包括除中央沟内或相邻电极接触外的所有电极接触。我们表明,执行运动和想象运动可以从非运动区域解码;将所有非运动接触组合成一个低维表示形式,为黎曼解码器提供了足够的信息,使其达到 0.83 ± 0.11 的曲线下面积。此外,通过在执行运动上训练我们的解码器并在想象运动上进行测试,我们证明这两种情况之间存在在 beta 频率范围内共享的分布信息。通过将来自所有区域的相关信息组合成一个低维表示形式,解码器能够在没有初级运动皮层信息的情况下实现较高的解码结果。这种表示形式使解码器对扰动、信号非平稳性和神经组织退化更具鲁棒性。我们的结果表明,超越运动皮层可以为更强大、更多功能的脑机接口开辟道路。
科学教育中的学习体验应多种多样,应包括小组和个人工作的机会、学生之间以及师生之间的讨论,以及动手/动脑活动,让学生能够构建和评估所研究现象的解释。此类调查和对积累的证据的评估为学生提供了加深对科学本质以及科学知识的性质和地位的理解的机会。
近年来,非侵入式脑机接口 (BCI) 设备和应用在各种环境(医疗、工业等)中得到了迅猛发展。该技术允许代理“直接用思想行动”,绕过外周运动系统。有趣的是,值得注意的是,典型的非侵入式 BCI 范式与人类自愿行动的神经科学模型相距甚远。值得注意的是,在 BCI 实验中,动作和感知之间的双向联系经常被忽略。在当前的观点文章中,我们提出了一种创新的 BCI 范式,它直接受到意念运动原理的启发,该原理假定自愿行动是由即将到来的感知效果的预期表现驱动的。我们相信 (1) 调整 BCI 范式可以实现简单的动作-效果绑定,从而实现动作-效果预测;(2) 使用这些动作-效果预测的神经基础作为 AI 方法中感兴趣的特征,可以实现更准确、更自然的 BCI 介导动作。
DNA 学习中心的虚拟营地学生行为准则让学生在丰富、愉快的实验室体验中茁壮成长。我们为学生提供一个安全的空间,让他们与同龄人一起体验动手和动脑的实验室而感到自豪。我们致力于为每个人提供无骚扰的体验,无论年龄、性别、性别认同和表达、性取向、残疾、个人外貌、民族、种族、宗教、国籍或科学知识水平如何。请知道,我们的教育工作者一直在努力实现同样的目标,因为我们今年夏天将营地转移到虚拟空间。为此,我们要求学生和家长通读并同意遵守以下政策:
摘要 — 深度学习的最新进展对脑机接口 (BCI) 研究产生了方法论和实践上的影响。在各种深度网络架构中,卷积神经网络 (CNN) 非常适合时空谱脑电图 (EEG) 信号表征学习。文献中描述的大多数现有基于 CNN 的方法都通过重复的非线性操作在连续的抽象级别提取特征,并涉及密集连接的层进行分类。然而,神经生理学研究表明,EEG 信号携带不同频率成分范围的信息。为了更好地反映 EEG 中的这些多频特性,我们提出了一种新颖的深度多尺度神经网络,该网络可发现多个频率/时间范围内的特征表征并提取电极之间的关系,即空间表征,以识别主体的意图/条件。此外,通过用时空谱信息完全表示脑电信号,所提出的方法可用于主动和被动脑电接口中的多种范式,而现有的方法主要集中在单一范式脑电接口上。为了证明我们提出的方法的有效性,我们对各种范式的主动/被动脑电接口数据集进行了实验。我们的实验结果表明,与同类的最先进的方法相比,所提出的方法取得了性能上的提升。此外,我们使用不同的技术分析了所提出的方法,例如 PSD 曲线和相关性分数检查以验证多尺度脑电信号信息捕获能力、用于研究学习到的空间滤波器的激活模式图和用于可视化表示特征的 t-SNE 绘图。最后,我们还展示了我们的方法在现实问题中的应用。
尽管许多研究表明多种疾病中的脑部节奏异常,但靶向深脑区域的有限手段却限制了驱动大脑节奏的治疗潜力。因此,我们开发了一种无创的毫秒精确的感觉刺激,以驱动脑节律。在这里,我们首次介绍了新开发的开源软件和指令,用于建筑,测试,调试,并使用脑电波(大脑广谱音频/视觉曝光)刺激。我们证明了多种物种和不同实验环境之间的脑电波刺激。这些方法构成了一种可自定义的,开源,可访问和无创的技术,可刺激脑振荡,从而有因果测试节奏的大脑活动如何影响脑功能。
在无人机(无人驾驶汽车,无人机)或无人机舰队的运行过程中,运营商必须能够监督无人机,任务物业,并在必要时重新控制。正如无人机的运营参数对于任务管理至关重要一样,负责控制或驾驶这些无人机的操作员的心理状态也至关重要,因为他的水平失败在安全性和绩效方面具有重大影响。但是,这常常被忽略了。几年来,神经工程学领域一直通过神经生理学测量来研究人类操作员。基于自动学习的工具的开发带来了一种在线估算心理状态的方法,因此可以开发考虑到这种心理状态的接口(即被动脑机接口)。迄今为止,航空学中的神经工学和被动脑机构界面的研究主要集中在飞行员(Verdière等,2018)和控制器(Arico等,2016)。然而,一些研究开始关注无人机运营商(Roy等,2017; Senoussi等,2017; Drougard等,2017; Jahanpour等,2020; Roy等,2020)。本论文旨在通过专注于使用无人机操作员的精神疲劳状态来发展这一迅速扩展的研究领域。适应性系统监视用户的活动和上下文,并试图适应用户的需求和偏好(Greenberg&Witten,1985)。这意味着系统的灵活性,但也考虑了用户的经验和状态。例如,这些系统已在驾驶的背景下进行了测试,在这种情况下,它们在常规情况下被证明特别有用(Lavie&Meyer,2010)。人类无人机相互作用是过去几年稳步增长的人类计算机相互作用的领域(Cauchard等,2021),是本文的中心。本文旨在建模,设计和实验能够在无人机操作员的状态和任务环境之间实现有效适应的新型界面。它将利用先前在isae-supaero进行的工作和疲劳估计的ENAC
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。