建筑模拟工具在设计阶段经常用于尺寸设备并进行基于模拟的研究,以帮助估计年度能源使用或销售。对此类仿真研究的需求,再加上新设计方案(例如建筑电气化)的出现,促使创建基于高级物理的建筑模型。Modelica建筑物库(Wetter,Wangda Zuo,T。S. Nouidui等人等2014)是此类模型中最著名的集合之一,它可以模拟建筑信封和供暖,通风和空调系统的动态行为(Chakrabarty,Maddalena,Qiao等)2021; Zhan,Wichern,Laughman等。2022)。基于Modelica的工具在分析建筑物的性能方面具有明显的好处,因为它们促进了系统控制器设计(Wetter,Ehrlich,Gautier等人。2022)和现实的闭环控制性能(Stoffel,Maier,Kümpel等)2023)。尽管这种基于物理的模型模型可以有效地模拟建筑包膜的能量和传质过程,以及HVAC系统的热流体物理学,但还有其他一些过程会影响HVAC Sys-TEM会影响HVAC Sys-TEM的加热和冷却负载,而这些过程并非由人类而受到人为动作。建筑物乘员会产生并吸收潜在的,明智的和辐射的热量,其Ac-
摘要 - 许多研究表明,可以从脑电图数据中解码听觉对自然语音的关注。但是,大多数研究都集中在选择性的听觉注意力解码(SAAD)上,而竞争扬声器则是对单个目标的绝对听觉注意解码(AAAD)的动态。AAAD的目标是衡量对单个演讲者的关注程度,在心理和教育环境中的客观衡量注意力。为了调查这种AAAD范式,我们设计了一个实验,主题在不同的细心条件下听到视频讲座。我们训练了神经解码器,以在基线的细节状态重建脑电图中的语音信封,并使用解码和真实语音信封之间的相关系数作为注意语音的指标。我们的分析表明,1-4 Hz频段中语音包膜的包络标准偏差(SD)与该指标在语音刺激的不同段之间密切相关。然而,这种相关性在0.1-4 Hz频段中削弱,其中专注状态和注意力不集中的状态之间的分离程度变得更加明显。这突出了0.1-1 Hz范围的独特贡献,从而增强了注意状态的区别,并且仍然受到混杂因素的影响,例如语音信封的时变动态范围。
摘要虽然中和靶向HIV-1融合肽的抗体已通过疫苗接种引起小鼠,但迄今为止报道的抗体仅来自一种可以中和的单个抗体类。 HIV-1菌株的30%。为探索鼠免疫系统产生交叉脱和中和抗体的能力并研究如何实现更高的宽度和效能,我们测试了17种利用多种融合肽载体结合物和HIV-1包膜的较高的促进疗法,并具有差异性融合型融合融合式肽。我们观察到在融合肽 - 载体结合的小鼠中启动可变的肽长度,以引起更高的中和反应,结果我们在豚鼠中构成了。从接种疫苗的小鼠中,我们分离了21种抗体,属于4种不同类别的融合肽指导的抗体,能够交叉中和。来自每个类别的顶级抗体集体中和208杆组合面板的50%以上。结构分析(X射线和冷冻EM)都揭示了每个抗体类别,以识别融合肽的独特构象,并具有能够促进多种融合肽的结合口袋。鼠疫苗接种可以引起多种中性抗体,并且在素数期间改变肽长度可以改善针对HIV-1脆弱性融合肽位点的跨层反应的启发。
2019-2020 年,严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2)(以前临时名称为 2019 年新型冠状病毒 (2019-nCoV))在中国湖北省武汉市爆发,导致大量冠状病毒感染疾病 (COVID-19) 患者死亡和发病,症状包括发烧、严重呼吸道疾病和肺炎。[1–3] 截至 2020 年 4 月 8 日,全球确诊病例超过 1,431,973 例,导致至少 82,085 人死亡。这些 SARS-CoV-2 分离株属于冠状病毒科的 Betacoronavirus 属,该属是一种有包膜的单链 RNA 病毒,包含 30 kb 的基因组和 14 个开放阅读框,包括四种主要的病毒结构蛋白:刺突蛋白(S)、膜蛋白(M)、包膜蛋白(E)和核衣壳蛋白(N)。[4–7] SARS-CoV-2 分离株的 S 基因序列与犀牛蝠冠状病毒 RaTG13 的核苷酸序列同源性为 93.1%,但与严重急性呼吸综合征冠状病毒 (SARS-CoV) 的核苷酸序列同源性不足 75%。与 SARS-CoV 相比,SARS-CoV-2 的病毒 S 序列在 N 端结构域中有三个额外的短插入,S 蛋白受体结合结构域 (RBD) 的受体结合基序中的五个关键残基中有四个发生改变。 [6,7] 尽管 SARS-CoV-2 和 SARS-CoV 具有相同的人类细胞受体-血管紧张素转换酶 II,但 SARS-CoV-2 似乎更容易在人与人之间传播。[1,8,9]
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是一种有包膜的、正义的、单链 RNA 病毒,属于 Betacoronavirus 属。其基因组由四种结构蛋白组成,即刺突 (S)、包膜 (E)、膜 (M) 和核衣壳 (N),其中 E、M 和 N 整合到病毒包膜中。S 糖蛋白以刺突的形式从成熟病毒体表面突出,对于病毒附着、融合和进入宿主细胞至关重要。虽然 SARS-CoV-2 的刺突蛋白与血管紧张素转换酶 2 (ACE2) 受体之间的关系已很容易确定,但 S1 亚基还含有一个溶剂暴露的精氨酸-甘氨酸-天冬氨酸 (RGD) 结合基序,该基序主要由整合素识别,特别是 a5b1 和 aVb3 (Sigrist 等人,2020 年;Tresoldi 等人,2020 年)。这些整合素主要在血管内皮细胞上表达,属于一大类异二聚跨膜受体家族,包含 a 和 ab 亚基,负责细胞粘附到细胞外基质以及包括免疫反应在内的其他信号传导效应和功能 (Hynes, 2002)。研究表明,使用小肽 ATN-161 和 Cilengitide 分别阻断 SARS-CoV-2 与 a 5 b 1 和 a V b 3 整合素的结合,可降低体内病毒感染性并减轻血管炎症(Amruta 等人,2021 年;Nader 等人,2021 年;Robles 等人,2022 年)。因此,我们建议紧急研究整合素作为 SARS-CoV-2 治疗靶点的治疗潜力(图 1)。
根据美国疾病控制与预防中心 (CDC) 和美国国家癌症研究所 (NCI) 的数据,人乳头瘤病毒 (HPV) 是最常见的性传播感染,约占全球所有癌症的 5%,仅在美国就有超过 8000 万人受到影响。人乳头瘤病毒是一种小型、无包膜的二十面体 DNA 病毒,可感染鳞状上皮细胞。病毒颗粒由与组蛋白结合的单个双链 DNA 分子组成,并包含在由结构蛋白 late (L)1 和 L2 组成的蛋白质衣壳内。迄今为止,已鉴定出 100 多种不同的 HPV 基因型,其中约 15 种类型被认为在宫颈、外阴、阴道、肛门、阴茎鳞状上皮以及最近的头颈部鳞状细胞中致癌。本研究旨在开发一种实验方法,以便安全有效地检测沿海卡罗莱纳大学 (CCU) 校园成员中的 HPV。开发基因组分离技术的目的是生成无活性、无感染性的病毒颗粒,同时保留其基因组指纹以供将来鉴定。噬菌体 T4 是一种非常强大的病毒颗粒,自然存在于外部环境中,可作为初步建立安全有效的分离技术的模型病毒。确定了用于基于 PCR 的 HPV 检测试验的一致引物,靶向 HPV 基因组的保守 L1 和 E6/E7 ORF(开放阅读框)区域。开发的方法提供了有效且可重复的病毒表征,使这些技术未来可用于检测沿海卡罗莱纳社区成员中的 HPV。
针对 SARS-CoV-2 主要蛋白酶 (M pro ) 的药物是已进入临床使用的有效治疗方法。这些药物的大规模使用将对耐药突变的进化施加选择压力。为了了解 M pro 的耐药潜力,我们对可能导致酵母筛选对尼玛瑞韦 (包含在药物 Paxlovid 中) 和目前处于 III 期试验的恩西瑞韦 (Xocova) 产生耐药性的氨基酸变化进行了全面调查。最近在尼玛瑞韦的多项病毒传代研究中报告的最具影响力的耐药突变 (E166V) 对尼玛瑞韦显示出最高的耐药性评分,而 P168R 对恩西瑞韦显示出最高的耐药性评分。使用系统方法评估潜在的耐药性,我们发现了 142 种尼玛瑞韦耐药突变和 177 种恩西瑞韦耐药突变。在这些突变中,有 99 种对两种抑制剂都产生了明显的耐药性,这表明很有可能出现交叉耐药性。许多表现出抑制剂特异性耐药性的突变与每种抑制剂突出底物包膜的不同方式一致。此外,具有强耐药性评分的突变往往功能减弱。我们的结果表明,尼玛瑞韦或恩西特瑞韦的强大压力将选择多种不同的耐药谱系,这些谱系将包括削弱与药物相互作用同时降低酶功能的原发性耐药突变和增加酶活性的继发性突变。全面识别耐药突变使得能够设计出具有降低耐药性潜力的抑制剂,并有助于监测循环病毒群中的耐药性。
摘要 世界卫生组织 (WHO) 于 2019 年 12 月获悉中国湖北省武汉市爆发冠状病毒肺炎。随后,于 2020 年 3 月 12 日报告了 125,048 例病例和 4,614 例死亡。冠状病毒是一种有包膜的 RNA 病毒,属于 Betacoronavirus 属,分布于鸟类、人类和其他哺乳动物中。世卫组织将这种新型冠状病毒疾病命名为 COVID-19。目前已有 80 多项临床试验启动,以测试冠状病毒的治疗方法,包括一些针对 COVID-19 的药物再利用或重新定位。因此,我们于 2020 年 3 月对 clinicaltrials.gov 数据库进行了搜索。检索到的研究的资格标准是:包含 clinicaltrials.gov 基本标识符编号;描述参与者的数量和研究时间;描述参与者的临床状况;并利用已经研究或批准用于治疗其他疾病的药物对感染新型冠状病毒 SARS-CoV-2 (2019-nCoV) 的患者进行干预。必须强调的是,本文仅涵盖了 clinicaltrials.gov 数据库中列出的试验。我们确定了 24 项临床试验,涉及 20 多种药物,例如人免疫球蛋白、干扰素、氯喹、羟氯喹、阿比多尔、瑞德西韦、法匹拉韦、洛匹那韦、利托那韦、奥司他韦、甲基泼尼松龙、贝伐单抗和传统中药 (TCM)。尽管药物再利用有一些局限性,但重新定位临床试验可能是一种有吸引力的策略,因为它们有助于发现新类别的药物;它们成本较低,进入市场所需的时间更短;并且存在用于配制和分销的药品供应链。
基于基因组结构和复制策略的相似性,RNA病毒如今可分为“超类群”,通常涵盖动物病毒和植物病毒(Goldbach & Wellink,1988;Strauss & Strauss,1988)。这一概念也越来越多地体现在病毒分类学中;尤其是引入了分类单元“目”,将很可能拥有共同祖先的病毒科合并在一起(Mayo & Pringle,1998)。对于正链、有包膜的冠状病毒和动脉炎病毒(最近被统一归入巢病毒目,Cavanagh,1997),基于相似的多顺反子基因组结构、共同的转录和(后)翻译策略以及一系列同源复制酶结构域的保守性(den Boon et al.,1991),它们之间建立了密切的系统发育关系。因此,有可能勾勒出nidovirus生命周期的共同轮廓(图1)(详见Lai & Cavanagh,1997;de Vries et al.,1997;Snijder & Meulenberg,1998)。然而,在某些方面,这两个病毒家族彼此之间存在显著差异。例如,最大的冠状病毒基因组,鼠肝炎病毒(MHV),其基因组为31±5kb,约为最小动脉炎病毒基因组,即马动脉炎病毒(EAV)12±7kb RNA的两倍半。此外,这两个病毒家族的结构蛋白没有明显的相关性,导致病毒体的大小和结构存在重要差异(den Boon et al.,1991;Snijder & Spaan,1995;de Vries et al.,1997)。大多数主要的动物正链RNA病毒群体要么产生单个多聚蛋白,要么产生单独的非结构和结构前体多肽,这些多肽随后被病毒编码或宿主编码的蛋白酶裂解,产生功能性亚基(Dougherty & Semler, 1993)。相比之下,在基因组3′-近端区域编码的nido病毒结构蛋白,
猪繁殖与呼吸综合征 (PRRS) 是最重要的猪病之一,造成全球巨大的经济损失。病原体 PRRS 病毒 (PRRSV) 是一种有包膜的单链正义 RNA 病毒,与马动脉炎病毒 (EAV)、小鼠乳酸脱氢酶升高病毒 (LDV) 和猿猴出血热病毒 (SHFV) 一起被归类为动脉炎病毒科、动脉炎病毒属、Variarterivirinae 亚科。其基因组长度约为 15 kb,包含至少 11 个开放阅读框 (ORF),具有 5' 帽和 3' 多聚腺苷酸尾 (1-3)。约占基因组三分之二的ORF1a和ORF1b编码非结构蛋白(nsp1~12),具有蛋白酶、复制酶和调控宿主细胞基因表达等功能,负责病毒RNA的合成( 4 )。基因组3’末端的ORF2~7编码结构蛋白,包括糖蛋白2(GP2)、GP3、GP4、GP5、包膜蛋白(E)、基质蛋白(M)、核衣壳蛋白(N),由一系列亚基因组RNA表达( 5 )。由于PRRSV RNA依赖性RNA聚合酶(RdRp)缺乏校对能力,病毒基因组极易发生突变和重组,导致世界范围内出现新的PRRSV分离株( 6 )。目前,PRRSV 可分为两个种:PRRSV-1(欧洲基因型,Betaarterivirus suid 1)和 PRRSV-2(北美基因型,Betaarterivirus suid 2)。两个种均表现出很高的遗传多样性,核苷酸序列同一性约为 60%,每个种可进一步分为多个分支、亚株或谱系。在中国,优势毒株为 PRRSV-2,其高致病性变异株的爆发引起养猪业的担忧(7)。PRRSV 感染可导致母猪严重繁殖障碍,并使各年龄段的猪患上呼吸道疾病,并常导致继发性细菌感染(如副猪嗜血杆菌和猪链球菌),临床表现更严重,死亡率更高(8)。