摘要:靶标识别涉及对具有药理活性的小分子配体的蛋白质靶标进行反卷积,这对于早期药物发现至关重要,但在技术上具有挑战性。光亲和标记策略已成为小分子靶标反卷积的基准,但共价蛋白质捕获需要使用高能紫外线,这会使下游靶标识别变得复杂。因此,迫切需要替代技术,以控制化学探针的激活,从而共价标记其蛋白质靶标。在这里,我们介绍了一种电亲和标记平台,该平台利用小型的氧化还原活性二氮杂环丁酮功能组来实现基于化学蛋白质组学的活细胞环境中的药效团靶标识别。实现该平台的基础发现是二氮杂环丁酮可以通过电化学氧化以显示可用于共价修饰蛋白质的反应中间体。这项工作首次证明了电化学平台是药物靶标识别的功能性工具。
Joshua Baccile, Organic Chemistry Elucidating the Role of Five Carbon Metabolism in Disease Isoprenoids are structurally diverse metabolites with an array of critical bioactivities which include cell membrane integrity (e.g., cholesterol), glycoprotein synthesis (e.g., the dolichols), steroid hormone signaling (e.g., androgens,雌激素和皮质醇)和线粒体健康(例如辅酶Q)。人类类人源自甲酸(MVA)途径,而许多植物和细菌都利用甲基红细胞thritol磷酸MEP MEP途径。MVA和MEP途径都在相同的两个结构相关的五碳前体上收敛,分别是焦磷酸异戊烯基(IPP)和二甲基乙烯基焦磷酸(DMAPP),这些链链被链链形成更高级别的类异on子。因此,IPP和DMAPP是所有生物体中所有类异on-的中央五碳前体。超出其作为前体的作用,IPP和DMAPP还直接修改了其他小分子(ATP)和大分子(37A tRNA)的作用,这是一种称为原始化的过程。IPP和DMAPP水平直接参与心血管疾病,最近与癌症,囊性纤维化和非酒精性脂肪肝病有关。 尽管对人类健康的重要性,但通过调节IPP和DMAPP的细胞内浓度以及IPP和DMAPP的独特生物活性而观察到的临床效应的机制相对较少。 这次演讲将集中在我们通过开发基于IPP和DMAPP的化学探针和用于代谢标记类吸收性分子和预苯基分子的方法的方法来弥合这一关键科学差距的努力。IPP和DMAPP水平直接参与心血管疾病,最近与癌症,囊性纤维化和非酒精性脂肪肝病有关。尽管对人类健康的重要性,但通过调节IPP和DMAPP的细胞内浓度以及IPP和DMAPP的独特生物活性而观察到的临床效应的机制相对较少。这次演讲将集中在我们通过开发基于IPP和DMAPP的化学探针和用于代谢标记类吸收性分子和预苯基分子的方法的方法来弥合这一关键科学差距的努力。我将讨论我们访问各种IPP和DMAPP类似物的合成方法。目前,我们利用这些化合物进行代谢标记研究,并研究IPP和DMAPP的独立生化活性。最后,我将讨论前肾上代谢标记的未来,该标记是以细胞特异性方式开发用于标记类异丙定和前化分子的方法。
摘要:迫切需要新药物来预防和治疗疟疾。大多数抗疟药发现依赖于表型筛查。但是,随着改进的目标验证策略的发展,现在正在利用以目标为中心的方法。在这里,我们描述了工具包的开发,以支持有希望的靶靶标,赖氨酸TRNA合成酶(PF KRS)的治疗性开发。该工具包包括抗性突变体,以探测抗性机制和针对特定化学型的靶向参与;一种能够产生适合配体浸泡的晶体的杂种KRS蛋白,从而提供高分辨率的结构信息以指导化合物优化;化学探针促进旨在揭示各种特定相互作用蛋白质和热蛋白质组谱分析(TPP)(TPP)的下拉研究;以及简化的等温TPP方法,可在生物学相关的环境中无公正地确认靶向靶向。这种工具和方法的组合充当开发未来目标软件包的模板。关键字:疟原虫,赖氨酸TRNA合成酶,热蛋白质组分析(TPP),等温TPP,化学下拉,抗疟药
摘要:分类为六个超家族的解旋酶是利用从ATP水解到重塑DNA和RNA底物的能量的机械酶。这些酶在各种细胞过程中具有关键作用,例如翻译,核糖体组装和基因组维持。解旋酶,并且许多病毒表达的旋转酶是其致病性所必需的。因此,解旋酶是化学探针和治疗剂的重要靶标。但是,开发针对构象动力学高构酶的化学抑制剂的化学抑制剂非常具有挑战性。我们认为,在化学蛋白质组学研究中使用的电力“侦察片段”可以利用用于开发共价抑制剂的解旋酶的抑制剂。我们采用了一种功能优先的方法,将酶试验与对映体探针对和质谱分析相结合,以开发一种共价抑制剂,该抑制剂有选择地靶向SARS-COV-2 NSP13中的变构位点,一种超级家庭-1解旋酶。此外,我们证明了侦察片片段抑制了与基因组维持有关的两个人类超家族酶BLM和WRN的活性。一起,我们的发现提出了一种发现在构象动态机械酶中发现共价抑制剂起点和可药物变构位点的方法。
烟酰胺腺嘌呤二核苷酸磷酸氧化酶2(NOX2)多亚基复合物是活性氧的高度丰富而中心的来源。nox2是涉及抗菌反应的先天免疫系统的关键酶,但是在许多疾病中,氧化应激和炎症涉及过多的NOX2活性。抑制NOX2作为一种治疗策略具有很大的潜力。抑制NOX2的有趣的药理学方法是靶向P47phox亚基,从而阻止蛋白质 - 蛋白质与P22Phox的相互作用,从而预防NOX2的组装和激活。但是,p47phox的浅结合袋使得开发类似药物的P47phox/p22phox抑制剂。最近,据报道,小分子LMH001抑制p47phox/p22phox相互作用,降低内皮NOX2活性,并保护小鼠免受血管紧张素II诱导的血管氧化应激的影响。这些值得注意的结果可能会对NOX2药理学领域产生重大影响,因为特定和有效的抑制剂很少。在这里,我们合成并测试了LMH001作为阳性对照。我们为提供LMH001提供了可靠的合成途径,但随后我们经历了LMH001在水性缓冲液中化学不稳定。此外,LMH001及其分解产物都不能抑制非细胞荧光极化测定法中的P47phox/ p22phox相互作用。但是,LHM001在功能性细胞测定中是NOX2的弱抑制剂,但与其分解产物之一相同的低效力。这些发现质疑LMH001的活性和建议的机制,并为对研究NOX2生物学的化学探针感兴趣的其他研究人员构成了重要信息。
映射人蛋白质组中所有蛋白质的可辅助性或潜在的可药用性是基于质谱的共价化学蛋白质组学的核心目标。实现这一雄心勃勃的目标需要高吞吐量和高覆盖样品制备以及液相色谱串联质谱分析,以进行数百至数千种反应性化合物和化学探针。在此规模上进行化学蛋白质组学筛选从实现增加样品吞吐量的技术创新中有益。在这里,我们通过建立用于同位素标记的蛋白质组学串联质量标签(SCIP-TMT)蛋白质组学平台的基于硅烷的可切合连接器来实现这种愿景,该平台通过早期样品池的区别,从而增加样品制备吞吐量。SCIP-TMT配对一种自定义兼容的SCIP捕获试剂,该试剂易于使用市售的TMT试剂以高产量功能化。一组SCIP-TMT的合成和基准测试显示样品制备时间的大幅度减少,高覆盖范围和高精度定量。通过筛选一组聚焦的四个半胱氨酸反应性电力,我们证明了SCIP-TMT对化学蛋白质组靶狩猎的实用性,从而确定了789个总配体半胱氨酸。以其与已建立的富集和量化协议的兼容性区分,我们预计SCIP-TMT很容易转化为广泛的共价化学蛋白质组应用。
目前的药物治疗由于毒性、低疗效和耐药性而失败;利什曼病是全球面临的重大健康挑战,迫切需要新的经过验证的药物靶点。受天然查尔酮 2',6'-二羟基-4'-甲氧基查尔酮 (DMC) 活性的启发,硝基类似物 3-硝基-2',4',6'-三甲氧基查尔酮 (NAT22, 1c) 被确定为强效的广谱抗利什曼原虫药物先导。结构修饰提供了一种含炔烃的化学探针,该探针标记了寄生虫内的一种蛋白质,该蛋白质被证实为胞浆锥虫过氧化物酶 (cTXNPx)。至关重要的是,在前鞭毛体和巨噬细胞内无鞭毛体生命形式中都观察到了标记,没有证据表明宿主巨噬细胞具有毒性。查尔酮在寄生虫中孵育会导致 ROS 积累和寄生虫死亡。通过 CRISPR-Cas9 删除 cTXNPx 会显著影响寄生虫表型,并降低查尔酮类似物的抗利什曼原虫活性。与计算机模拟 cTXNPx 同源性模型的分子对接研究表明,查尔酮能够结合假定的活性位点,阻碍其接近关键的半胱氨酸残基。总之,这项研究将 cTXNPx 确定为抗利什曼原虫查尔酮的重要靶点。
Chikungunya病毒(Chikv)是一种蚊子播的α病毒,在过去的二十年中一直导致许多大规模爆发。当前,任何α病毒感染都没有FDA批准的治疗剂。CHIKV非结构蛋白2(NSP2)包含半胱氨酸蛋白酶域,对于病毒复制至关重要,使其成为药物发现运动的吸引人目标。在这里,我们优化了CHIKV NSP2蛋白酶(NSP2PRO)生化测定法,以筛选6,120个混合的半胱氨酸指导的共价片段。使用50%的抑制阈值,我们确定了153次命中(2.5%的命中率)。在剂量反应随访中,RA-0002034(一种共价片段,包含乙烯基磺基弹头,抑制了具有58±17 nm的IC 50的CHIKV NSP2PRO,并且具有时间依赖性抑制研究的进一步分析产生了6.4 x INACT /K IACT /K IACT /K INACT /k i k I k inact /k iinact /ki。LC-MS/MS分析确定RA-0002034以特定于位置的方式将催化半胱氨酸共价修改。此外,RA-0002034对一系列半胱氨酸蛋白酶没有明显的脱靶反应性。除了对CHIKV NSP2PRO活性和特殊选择性的有效生化抑制外,在α-病毒感染的细胞模型中测试了RA-0002034,并有效地抑制了CHIKV和相关α病毒的病毒复制。这项研究强调了化学探针ra-0002034的发现和表征,这是一种有希望的命中化合物,从基于共价碎片的筛选到CHIKV或PAN-α-阿尔巴病毒治疗。
丙酮酸羧化酶(PC)与多种疾病有关,包括2型糖尿病,癌症和细菌/病毒感染。但是,目前没有能够在体外和体内精确操纵PC活性的分子工具。本论文描述了1,3二取代的咪唑替替替翁的鉴定和表征,是金黄色葡萄球菌PC的新型有效,选择性和可渗透的变构抑制剂。基于动力学,结构和生物物理数据,假设这类抑制剂可以在PC上的非催化“ EXO结合”位点结合。据报道,此EXO结合位点对于催化至关重要,但以前尚未被认为是可药物的位置。本论文还表明,与未激活的PC相比,变构激活的PC对小分子抑制的敏感性明显较小。这一发现为针对人类PC的小分子抑制剂的发展提出了一个重要的新考虑。由于人类PC需要通过乙酰-COA激活催化活性,因此必须针对PC的变构激活形式进行未来的药物发现工作。最后,提供了体外证据,以反驳最近的说法,即两种天然产物Erianin和Anemoside B4是人类PC的抑制剂。本文提交了一个战略框架,以推动针对人类PC的药物发现。它概述了优化的筛选程序,并探讨了鉴定激活人PC抑制剂的可能途径。总体而言,这项工作大大提高了针对人PC的化学探针的开发,并最终有助于扩大用于研究PC在疾病中作用的可用工具包。
摘要理由化疗诱导的认知障碍(CICI),化学邻磷脂和化学杂志是化学治疗剂影响癌症患者/幸存者的精神功能障碍的常见术语。CICI表现为短期/长期记忆问题和延迟的心理处理,这会干扰一个人的日常活动。了解CICI机制有助于开发可能减轻疾病状况的治疗干预措施。动物模型促进了批判性评估,以阐明基本机制,并构成验证不同治疗假设和策略的组成部分。目标需要对科学文献进行有条理的评估,以了解与化学治疗剂在不同的临床前研究中使用的认知变化。这篇评论主要强调了动物模型,其动物模型是通过各种化学治疗剂单独并结合使用的,其提出的机制导致了认知功能障碍。本综述还指出,健康动物中化学探针的分析,以了解在没有肿瘤和承重肿瘤动物中干预措施的机制,以模仿人类癌症条件,以筛查潜在的候选药物针对Chemobrain。结果在健康和承重肿瘤的动物中证明了由于常用化学治疗剂的大量记忆不足。空间和情感认知障碍,神经营养蛋白的改变,氧化和炎症标志物以及长期增强的变化在不同动物模型中通常会发生变化。结论障碍是癌症化学疗法的严重副作用之一。由于不同趋势改变行为和生化参数的趋势的化学治疗剂机制不同,化学疗法可能会带来明显的风险,从而导致健康和耐肿瘤动物的记忆障碍。