摘要 — 为了快速自动诊断神经疾病,需要从体积磁共振成像 (MRI) 中计算机辅助检测脑损伤。模板匹配技术可以为脑损伤的自动定位提供满意的结果;然而,找到使模板和损伤相似度最大化的最佳模板大小仍然具有挑战性。这增加了算法的复杂性和对计算资源的要求,同时使用了三维 (3D) 模板处理大型 MRI 体积。因此,需要降低模板匹配的计算复杂度。在本文中,我们首先提出了一个数学框架,用于计算归一化互相关系数 (NCCC) 作为 MRI 体积和近似 3D 高斯模板之间的相似性度量,具有线性时间复杂度,而不是传统的基于快速傅里叶变换 (FFT) 的方法,其复杂度为,其中是图像中的体素数,是尝试的模板半径的数量。然后,我们提出一个数学公式来分析估计图像中每个体素的最佳模板半径,并计算具有位置相关最佳半径的 NCCC,从而将复杂度降低到。我们在一个合成和两个真实的多发性硬化症数据库上测试了我们的方法,并将其在病变检测中的性能与 FFT 和最先进的病变预测算法进行了比较。我们通过实验证明了所提出的方法在脑病变检测中的效率及其与现有技术相当的性能。索引术语 – 脑病变检测、计算复杂度、FFT、MRI、NCCC、模板匹配。
摘要 — 为了快速自动诊断神经疾病,需要从体积磁共振成像 (MRI) 中计算机辅助检测脑损伤。模板匹配技术可以为脑损伤的自动定位提供满意的结果;然而,找到使模板和损伤相似度最大化的最佳模板大小仍然具有挑战性。这增加了算法的复杂性和对计算资源的要求,同时使用了三维 (3D) 模板处理大型 MRI 体积。因此,需要降低模板匹配的计算复杂度。在本文中,我们首先提出了一个数学框架,用于计算归一化互相关系数 (NCCC) 作为 MRI 体积和近似 3D 高斯模板之间的相似性度量,具有线性时间复杂度,而不是传统的基于快速傅里叶变换 (FFT) 的方法,其复杂度为,其中是图像中的体素数,是尝试的模板半径的数量。然后,我们提出一个数学公式来分析估计图像中每个体素的最佳模板半径,并计算具有位置相关最佳半径的 NCCC,从而将复杂度降低到。我们在一个合成和两个真实的多发性硬化症数据库上测试了我们的方法,并将其在病变检测中的性能与 FFT 和最先进的病变预测算法进行了比较。我们通过实验证明了所提出的方法在脑病变检测中的效率及其与现有技术相当的性能。索引术语 – 脑病变检测、计算复杂度、FFT、MRI、NCCC、模板匹配。
关键词:全波形,激光雷达,联合配准,表面匹配 摘要:机载全波形激光雷达能够记录后向散射激光脉冲的完整波形。由于这种能力,与传统的激光雷达系统相比,它可以在每条激光行进路径上检测到更多的额外物体,因此已逐渐被引入森林或植被区域的应用中。为了从扫描点云中提取感兴趣的信息,数据处理包括预处理(如脉冲检测)、联合配准、分割、分类等。按顺序执行。从处理链中可以看出,数据联合配准的质量是影响后续处理和分析可靠性的关键因素之一。因此,本文重点关注此阶段可能出现的问题,并提出了一种提高数据联合配准性能的方法。本文采用Riegl Q680i机载全波形激光雷达从相邻飞行带采集两组点云。本系统将扫描数据分为单个回波、第一个回波、最后一个回波和其他回波。为检验飞行带平差性能,分别从两个飞行带中提取了单个回波和最后一个回波点云,这两个回波点云更能代表地形。在专有软件RiPROCESS中进行预处理和配准后,发现使用单个回波或最后一个回波数据集时,两个飞行带之间存在错位。为了解决这个问题,应用了3D表面匹配技术。此外,为了实现理想的配准,评估了使用不同类型回波数据进行表面匹配的性能。本文分析了该方法所取得的改进和可行性。1 引言
和连续扩散模型,因为SDE指定的扩散模型可以视为离散模型的连续限制(第3节),并且通过合适的时间离散化从连续模型中获得离散扩散模型(第5.3节)。观点是SDES揭示了模型的结构属性,而离散的对应物是实际的实现。本文的目的是为基于分数的扩散模型的最新理论提供教程,主要是从统计重点的连续角度来看。也将提供离散模型的参考。我们为大多数已陈述的结果绘制证明,并且仅在分析至关重要时才给出假设。我们经常使用“在适当条件”的“在适当条件下”的短语,以避免不太重要的技术细节,并保持简洁和关注点。该论文是对该领域的温和介绍,从业者将发现一些分析对于设计新模型或算法有用。在这里首次出现一些结果(例如,在第5.2、6.2和7.3节中)。由于采用了SDE公式,因此我们假设读者熟悉基本的随机演算。ØKksendal的书[50]提供了一个用户友好的帐户,以进行随机分析,并且更高级的教科书是[34,68]。另请参见[76]有关扩散模型的文献综述,以及[8]进行优化概述,并具有更高级的材料,例如扩散指导和微调。本文的其余部分如下组织。具体示例在第3节中提供了。在第2节中,我们从扩散过程的时间反转公式开始,这是扩散模型的基石。第4节与分数匹配技术有关,这是扩散模型的另一种关键要素。在第5节中,我们考虑扩散模型的随机采样器,并分析其收敛性。在第6节中,确定性采样器 - 引入了概率流,以及其应用于一致性模型。在第7节中给出了分数匹配的其他结果。总结说明和未来的指示在第8节中总结了。
摘要 - 与CMOS过程技术缩放,制造纳米级晶体管,触点和互连的掩模成本变得非常昂贵,特别是对于低容量设计。此外,较高的晶体管密度导致了较高的设计复杂性和大型模具,这导致了设计周期时间的增加和过程产量下降。这些挑战迫使小批量应用特异性集成电路(ASIC)朝着高度次优的可编程栅极阵列(FPGAS)朝向高度的。In this arti- cle, we propose a new approach for designing and fabricating high-mix, low-volume heterogeneously integrated ASICs, referred to as Microscale Modular Assembled ASIC (M2A2), consisting of: 1) pick-and-place assembly of prefabricated blocks (PFBs) which utilizes the nano-precision placement capabilities developed in jet-and-flash imprint lithography (J-FIL)和2)EDA设计方法利用无监督的学习和图形匹配技术。EDA方法论利用现有的CAD工具基础架构,以便于当前的EDA生态系统中采用。所提出的制造技术利用采摘和地组装技术允许PFBS的纳米专业组装。PFB可以用高级过程节点制造,然后在晶圆基板上编织在一起。然后可以在PFB编织层的顶部创建/放置定制设计的低成本后端金属层,以实现各种高混合,低量的ASIC设计。M2A2将通过最佳的PFB选择和编织在前端设计中具有更大的功能。在本文中,基于M2A2的设计的性能与不同的设计技术(例如基线ASIC,FPGA和SASIC)相对,在16 nm,40 nm和130 nm CMOS ProudeS节点上。PNR后模拟结果超过15个IWL基准测试表明,所提出的M2A2设计实现了27。11× - 34。89×降低功率 - 否决产物(PDP),并产生1。69× - 2。与基线ASIC相比, 36倍面积。 M2A2设计达到15%–68.5%36倍面积。M2A2设计达到15%–68.5%
摘要。块体复合材料已融合其和(BMG)金属玻璃摘要。块体(BMGMC)具有竞争性的强度、硬度以及非常大的弹性应变极限。然而,它们缺乏延展性和随后的低韧性,这是由于玻璃结构固有的脆性,这使得它们具有良好的强度、硬度以及非常大的弹性应变极限。然而,它们缺乏延展性和随后的低韧性,这是由于玻璃结构固有的脆性,这使得它们具有良好的强度、硬度以及非常大的弹性应变极限。然而,它们缺乏延展性,随后的韧性较低,这是由于玻璃结构固有的脆性使它们容易屈服。然而,它们缺乏延展性,随后的韧性较低,这是由于玻璃结构固有的脆性使它们容易屈服。已经提出了各种可行的机制,最近,增材制造以抵消这种影响引起了广泛关注。有人提出,增材制造可以一步克服这些困难,因为该过程中固有的非常高的冷却速率对于玻璃形成至关重要。再加上精心选择的合金化学成分,这被认为是最好的方法,引起了广泛关注。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。与精心选择的合金化学成分相结合被认为是最佳解决方案,引起了广泛关注。有人提出,增材制造可以一步克服这些困难,因为该过程中存在非常高的冷却速率,而这对于玻璃形成至关重要。与精心选择的合金化学成分相结合被认为是在单个步骤中制造具有优异性能的零件的最佳净形状解决方案。在本报告中,我们对此进行了描述。提出采用基于边到边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。假设延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。据称,所提出的方法可以实现这一目标。提出采用基于边到边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。所提出的方法据称就是这样。提出采用基于边到边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。所提出的方法据称就是这样。凝固工艺采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序,旨在提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而改善性能。这可以通过操纵孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。凝固工艺采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序,旨在提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而改善性能。这可以通过操纵孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。延展结晶相的尺寸和分布最能改善微观结构,从而改善性能。这可以通过控制孕育剂的类型、尺寸和数量来控制。所提出的方法就是针对这一点。提出采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这可以通过控制孕育剂的类型、尺寸和数量来控制。所提出的方法就是针对这一点。提出采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这可以通过控制孕育剂的类型、尺寸和数量来控制。所提出的方法就是针对这一点。提出了一种凝固处理方法,该方法基于边到边匹配技术,采用精心选择的孕育剂以及精心控制的孕育程序,可以提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而提高性能。这可以通过控制孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。提出了一种凝固处理方法,该方法基于边到边匹配技术,采用精心选择的孕育剂以及精心控制的孕育程序,可以提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而提高性能。这可以通过控制孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。提出了一种凝固处理方法,该方法基于边到边匹配技术,采用精心选择的孕育剂以及精心控制的孕育程序,可以提高机械性能。假设延展性结晶相的数量密度、大小和分布最能改善微观结构,进而改善性能。这意味着可以通过控制孕育剂的类型、大小和数量来控制。所提出的方法论就是针对这一点的。提出了采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固工艺,以反映增强的机械性能。据推测,延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。据称,所提出的方法具有最大的潜力。