摘要 — 为了快速自动诊断神经疾病,需要从体积磁共振成像 (MRI) 中计算机辅助检测脑损伤。模板匹配技术可以为脑损伤的自动定位提供满意的结果;然而,找到使模板和损伤相似度最大化的最佳模板大小仍然具有挑战性。这增加了算法的复杂性和对计算资源的要求,同时使用了三维 (3D) 模板处理大型 MRI 体积。因此,需要降低模板匹配的计算复杂度。在本文中,我们首先提出了一个数学框架,用于计算归一化互相关系数 (NCCC) 作为 MRI 体积和近似 3D 高斯模板之间的相似性度量,具有线性时间复杂度,而不是传统的基于快速傅里叶变换 (FFT) 的方法,其复杂度为,其中是图像中的体素数,是尝试的模板半径的数量。然后,我们提出一个数学公式来分析估计图像中每个体素的最佳模板半径,并计算具有位置相关最佳半径的 NCCC,从而将复杂度降低到。我们在一个合成和两个真实的多发性硬化症数据库上测试了我们的方法,并将其在病变检测中的性能与 FFT 和最先进的病变预测算法进行了比较。我们通过实验证明了所提出的方法在脑病变检测中的效率及其与现有技术相当的性能。索引术语 – 脑病变检测、计算复杂度、FFT、MRI、NCCC、模板匹配。
主要关键词