信念传播 (BP) 是一种众所周知的低复杂度解码算法,对重要的量子纠错码类别具有很强的性能,例如随机扩展码的量子低密度奇偶校验 (LDPC) 码类。然而,众所周知,在面对拓扑码(如表面码)时,BP 的性能会下降,其中朴素 BP 完全无法达到低于阈值的状态,即纠错变得有用的状态。之前的研究表明,这可以通过借助 BP 框架之外的后处理解码器来补救。在这项工作中,我们提出了一种具有外部重新初始化循环的广义信念传播方法,该方法可以成功解码表面码,即与朴素 BP 相反,它可以恢复从针对表面码定制的解码器和统计力学映射所知的亚阈值状态。我们报告了独立位和相位翻转数据噪声下的 17% 阈值(与理想阈值 20.6% 相比),以及去极化数据噪声下的 14% 阈值(与理想阈值 18.9% 相比),这些阈值与非 BP 后处理方法实现的阈值相当。
最近,在豪斯多夫维数为 2+ ϵ 的分形格上构造了一类分形表面码 (FSC),此类码可采用容错非 Clifford CCZ 门 [1]。我们研究了此类 FSC 作为容错量子存储器的性能。我们证明了在豪斯多夫维数为 2 + ϵ 的 FSC 中,存在针对位翻转和相位翻转错误具有非零阈值的解码策略。对于位翻转错误,我们通过对分形格中孔洞的边界进行适当的修改,将为常规 3D 表面码中的串状综合征开发的扫描解码器应用于 FSC。我们对 FSC 的扫描解码器的改进保持了其自校正和单次特性。对于相位翻转错误,我们采用针对点状综合征的最小权重完美匹配 (MWPM) 解码器。对于具有豪斯多夫维数 DH ≈ 2 . 966 的特定 FSC,我们报告了扫描解码器在现象噪声下的可持续容错阈值(∼ 1 . 7% )和 MWPM 解码器的代码容量阈值(下限为 2 . 95% )。后者可以映射到分形晶格上限制希格斯跃迁临界点的下限,该下限可通过豪斯多夫维数进行调整。
以及宏蜂窝网等; 3. 3G TDD 系统应尽可能支持智能天线、上行同步、接力切换、联合检测等先进技术; 4. chip rate 应易于部署用于基带数据处理的软件无线电; 5. 低成本解决方案; 6. 3G TDD 系统应尽可能考虑与现有的 2G 移动系统和未来的 3G FDD 系统的兼容性。基于以上考虑,建议为 TD-SCDMA 采用一种低 chip rate(为 UTRA-TDD 也提供一种低 chip rate 选项),其准确值为 1.3542Mcps。 1.3 性能 对于 IMT2000 RTT,应满足 ITU 的最低要求,该要求在文档 M.1225 中提出。关键是要提供IMT2000所要求的业务,即在不同环境下提供从1.2kbps到2Mbps速率的数据业务,并且提供高频谱效率、低成本、全球漫游等性能。众所周知,在提供同样的数据传输速率下,更窄的带宽或更低的码片速率意味着更高的频谱效率和更低的成本。那么问题就变成了如何选择最小码片速率才能满足IMT2000的最低要求。根据我们的研究,最小码片速率主要取决于RTT中采用的技术。仿真结果表明,TD-SCDMA(UTRA-TDD低码片速率模式)RTT方案在1.3542Mcps码片速率下可以满足IMT2000的最低要求。1.4 技术在1.3542Mcps码片速率下满足IMT2000的最低要求,主要归功于TD-SCDMA RTT中采用的先进技术。也就是说,当RTT采用智能天线、上行同步、联合检测等先进技术时,可以在相同的码片速率下达到更高的数据传输速率和容量,但遗憾的是,基于目前的微电子技术水平,这些技术限制了系统的码片速率。
• 利用量子物理定律传输数据 • 兴趣和投资迅速增长;6G 技术 • 一次性密码本加密非常安全,但需要生成一次随机密钥,很难实现
癌症中抽象的DNA修复缺陷可能会导致特征性突变模式,例如BRCA1/2的缺乏和PARP抑制剂的疗效预测所示。我们基于全基因组突变模式(包括结构变异,Indels和碱基替代特征)的145个单个DNA损伤反应基因的功能丧失(LOF)训练和评估。我们鉴定了24个基因,它们的缺乏症可以很好地预测,包括BRCA1/2,MSH3/6,TP53和CDK12 LOF变体的预期突变模式。cdk12与串联重复相关,我们在这里证明,这种关联可以准确预测前列腺癌的基因缺乏(接收器操作员特征曲线下的面积= 0.97)。我们的新型关联包括ATRX,IDH1,HERC2,CDKN2A,PTEN和SMARCA4的单或双重LOF变体,并且我们的系统方法产生了预测模型的目录,这可能提供了用于进一步研究和开发治疗的目标,并有助于指导治疗。
由 { ( x te i , y te i ) } n te i =1 构成的例子,取自测试分布 p te ( x , y ) = p te ( x ) p te ( y | x )。
未经出版商事先书面许可,或通过向 Copyright Clearance Center, Inc.(地址:222 Rosewood Drive, Danvers, MA 01923,电话:(978) 750-8400,传真:(978) 750-4470,或通过网站 www.copyright.com)支付适当的每份费用获得授权,不得以任何形式或任何手段(电子、机械、影印、录制、扫描或其他方式)复制、存储于检索系统或传输本出版物的任何部分,但 1976 年《美国版权法》第 107 或 108 条允许的除外。向出版商申请许可的邮件地址为:John Wiley & Sons, Inc. 许可部门,地址为:111 River Street, Hoboken, NJ 07030,电话为 (201) 748-6011,传真为 (201) 748-6008,或在线申请,网址为:http://www.wiley.com/go/permission。
协调是将航班控制权移交给另一个连续的 ATS 单位或控制部门的过程的一部分。要进行协调,需要事先做好一些基本准备:ATC 单位提供飞行计划和控制数据、单位之间的地对地通信设施、协议书 (LoA)、责任区 (AoR) 和随后的空域边界,这些都会导致航班控制权的转移。在接受 ATC 单位时,必须了解即将到来的航班,这就是通知。在 ATC 单位,作为协调过程的一部分,各个航班的数据传递可以通过电话或连接飞行数据处理系统 (FDPS) 来进行,后者已在很大程度上取代了口头估计。国际民航组织定义的飞行阶段是为了确保通知阶段的时间和内容标准,从而确保航班身份。协调是确认先前商定的条件导致控制权转移 (TOC) 的一部分;或者提出替代条件,接收 ATS 单位必须同意这些条件后才能进行 TOC。
量子发射体(例如离子、原子、 NV 中心或量子点)与谐振器光学模式的强耦合和较长的腔光子寿命对于量子光学在基础研究和实用量子技术的众多应用中至关重要。有望满足这些要求的系统是光纤微腔 [1-4]、离子束蚀刻介质谐振器 [5] 或微组装结构 [6]。发射体和腔光子之间的强耦合可以通过很小的腔体体积和非常短的光学腔来实现。然而,对于许多现实的量子装置,由于技术困难,腔镜不能放置得太近:对于囚禁离子系统,短腔会导致介质镜带电并导致射频离子囚禁场畸变 [7];对于中性原子,由于需要将原子输送到腔内以及需要从光学侧面进入腔体进行冷却和捕获[8,9],短腔长受到限制。因此,用于量子光学装置应用的光学腔需要结合强耦合率和低损耗,同时保持镜子足够远。实现强耦合的一种方法是使腔体处于(近)同心配置中 [10]。这使腔中心的光模场腰部最小化,从而使发射极-光子耦合最大化,但是由于镜子上的模场直径较大,会增加削波损耗,从而限制了由腔协同性所能实现的最大腔性能。增加腔中心场振幅的另一种方法是通过调制镜子轮廓来创建某种干涉图案 [11]。我们假设我们不受球形腔的限制,即我们可以使用例如聚焦离子束铣削或激光烧蚀来创建任意形状的镜子,如第 6 节中更详细讨论的那样。在这里,我们用数字方式探索了腔镜的调制球面轮廓,这些轮廓会产生高度局部化的腔模式,同时保持较低的损耗。通过这种方法,我们发现了一种镜子轮廓的流形,它可以提供比同心腔更低的损耗率,从而实现更高的协同性。与我们之前的工作 [ 11 ] 相比,在这里我们不需要先验地了解我们想要生成的确切模式形状(特别是特定的
摘要。协作感知通过共享感知信息有效地扩展了代理的感知范围,并且它解决了单车感知中的遮挡问题。大多数现有作品都是基于感知模型同质性的假设。但是,在实际的协作场景中,代理使用不同的感知模型体系结构,这会导致合作者共享的中间功能的规模,渠道数量和语义空间的差异,从而为协作带来了挑战。我们介绍了HeteCooper,这是一个与异质感知模型的场景的合作感知框架。为了建模异质特征之间的相关性,我们构建了特征协作图,该图形完全保留了特征的语义信息和空间信息。此外,基于图形变压器的消息传递机制旨在在功能协作图中传输功能消息。首先,节点通道的数量和语义空间由Sepantic Mapper统一。然后,特征信息是由Edge Weighted引导的注意力集合而来的,最后实现了异质特征的融合。测试结果表明,我们的方法在模型均匀性和异质性方案中都能达到卓越的性能,并且对特征大小的变化也具有良好的可扩展性。