• 根据《清洁水法》,任何人未经许可将点源污染物排放到可航水域都是违法的。根据《清洁水法》第 402 条(EPA 2013 船舶通用许可证 (VGP)),EPA 对所有长度超过 24 米(79 英尺)的非娱乐性、非军用船只在美国水域正常运行时发生的排放进行监管。• 任何尺寸的小型船舶和渔船都必须遵守 EPA 2013 VGP 和美国海岸警卫队压载水法规 33 CFR 151.10 中规定的压载水排放要求。• 遵守当地政府、加利福尼亚州、美国海岸警卫队和 EPA 对船舶排放的适用许可证和监管要求• 船舶运营商将遵守 33 CFR 151.51-77 中概述的污染法规,因此预计只会意外产生垃圾和杂物。海洋哺乳动物和海龟 船舶交通和噪音对海洋哺乳动物的干扰
2015 年 11 月 18 日 - ClassNK 凭借其 3D 建模软件 ClassNK-PEERLESS 在 11 月 16 日于安特卫普举行的国际散货杂志 (IBJ) 颁奖典礼上荣获 IT 解决方案奖。该奖项的独立评审团从众多 IT 解决方案奖提名中选出了 ClassNK-PEERLESS,该奖项旨在表彰提高散货作业效率的新创新。ClassNK-PEERLESS 为压载水管理 (BWM) 公约预期生效后出现的压载水管理 (BWM) 系统改造瓶颈提供了解决方案。以前需要进入机舱并手动测量每个结构,而 ClassNK-PEERLESS 通过使用高精度 3D 激光扫描仪简化了流程并消除了直接接触的需要。这是 ClassNK 连续第二年荣获 IT 解决方案奖。去年,该公司凭借联合开发的船舶性能监控和优化解决方案 ClassNK-NAPA GREEN 荣获该奖项。
斑马贻贝(Dreissena Polymorpha)和Quagga贻贝(Dreissena ugensis或Dreissena roustriformis ugensis),统称为dreissenids,是东欧Ponto-Caspian地区的淡水贻贝。他们于1980年代后期到达伊利湖,可能是在跨波亚船的压载水中(McMahon,1996)。dreissenids可以在船只,电动机和拖车中生存几天的干燥条件。他们还搭便车上的水族馆植物,例如在PET和水族馆商店提供的苔藓球(美国地质调查局,2021年)。斑马贻贝是第一个到达并建立的人。存在两个物种的地方,Quagga贻贝经常取代斑马贻贝,因为它们更大。自入侵以来,斑马贻贝已经扩散到31个州和Quagga贻贝到18个州(美国地质调查局,2023年)。Bilge和Livewell水的娱乐船和运输船的压载水一直是传播的主要向量。
执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
我们推进了新技术的发展,并基于稳定的利润结构在海洋设备行业建立了坚实的立足点。我们从专门提供的水处理设备开始,其中包括许多类型的灭菌剂30年。从那时起,为了增强我们在全球市场的竞争力,我们的公司已将其多样化为离岸工厂,压载水处理系统,涂料,涂漆和管道线轴。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
环境工程师参与的项目支持设计、开发和测试最先进的设备和系统,以便在独特的船上操作环境的限制下高效使用;整合最新的化学和物理过程,用于废物管理和处理以及材料技术和制造方法。环境工程师在岸上和海上从事项目技术领域的工作,包括固体废物、医疗废物、含油废水、黑水、灰水、压载水和危险材料控制和管理。
环境工程师参与的项目旨在支持设计、开发和测试最先进的设备和系统,以便在独特的船上操作环境的限制下高效使用;整合最新的化学和物理工艺,用于废物管理和处理以及材料技术和制造方法。环境工程师在岸上和海上从事项目技术领域的工作,包括固体废物、医疗废物、含油废水、黑水、灰水、压载水和危险材料控制和管理。