执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
主要关键词