最先进的面部识别系统的性能至关重要的是大规模培训数据集的可用性。然而,如今的收集和分布生物识别数据的收集和分布已经增加,这已经导致了有价值的面部识别数据集的缩回。合成数据的使用代表了一个潜在的解决方案,但是,对训练识别模型有用的保护隐私面部图像的产生仍然是一个空旷的问题。生成方法,但仍与可见光谱绑定。为了解决这些问题,我们提出了一个新颖的身份条件生成框架,能够生成可见和近红外隐私的面部图像的大规模识别数据集。该框架依赖于一种新型的身份条件条件的双分支样式的生成对抗网络,以允许综合由预识别的识别模型的特征确定的一致性高质量样本。此外,该框架结合了一个新颖的过滤器,以防止隐私阐明身份的样本到达生成的数据集并提高身份可分离性和身份内部多样性。对六个公开可用数据集进行的广泛实验表明,我们的框架可以在保留现实世界主题的隐私性的同时获得竞争性合成能力。合成的数据集还比竞争方法甚至小规模的现实世界数据集生成的数据集更加有助于培训更强大的识别模型。使用可见的和近红外数据进行训练,还可以在现实世界可见的频谱基准上提高识别精度。因此,使用多光谱数据的培训可以潜在地改善仅利用可见光谱的现有识别系统,而无需其他传感器。
稳态视觉诱发电位 (SSVEP) 是一种广泛使用的脑机接口 (BCI) 范式,因其多目标能力和有限的脑电图电极要求而受到重视。传统的 SSVEP 方法经常因闪烁的光刺激而导致视觉疲劳和识别准确率下降。为了解决这些问题,我们开发了一种创新的稳态运动视觉诱发电位 (SSMVEP) 范式,该范式融合了运动和颜色刺激,专为增强现实 (AR) 眼镜设计。我们的研究旨在增强 SSMVEP 反应强度并减轻视觉疲劳。实验在受控的实验室条件下进行。使用 EEGNet 的深度学习算法和快速傅里叶变换 (FFT) 分析脑电数据,以计算分类准确率并评估反应强度。实验结果表明,双模态运动-颜色融合范式显著优于单模态SSMVEP范式和单色SSVEP范式,在中等亮度(M)和C=0.6的面积比下,准确率最高可达83.81%±6.52%。客观测量和主观报告均证实了双模态运动-颜色融合范式的信噪比(SNR)有所提高,视觉疲劳有所减轻。研究结果验证了双模态运动-颜色融合范式在基于SSVEP的脑机接口(BCI)中的应用前景,能够同时提升脑部反应强度和用户舒适度。
量子振荡现象是理解量子物质电子结构的重要工具。本文我们系统地研究了天然石墨中电子比热容 C el 的量子振荡。我们发现,单个自旋朗道能级与费米能级的交叉产生了双峰结构,这与 Lifshitz-Kosevich 理论预期的单峰形成鲜明对比。有趣的是,双峰结构是由自由电子理论中 C el / T 的核心项预测的。C el / T 代表宽度为 4.8 k BT 的光谱音叉,可以随意调谐至共振。使用巧合法,双峰结构可用于准确确定量子材料的朗德 g 因子。更一般地,音叉可用于揭示由磁场调谐的费米子态密度中的任何峰,例如重费米子化合物中的 Lifshitz 跃迁。
传统康复技术存在局限性,大多数患者在卒中后 1 年恢复情况不佳。因此,神经反馈 (NF) 或脑机接口在卒中康复中的应用越来越受到关注。事实上,NF 有可能增强对目标皮质区域的意志控制,从而影响运动功能恢复。然而,目前的实施受到所用特定成像方式的时间、空间或实际约束的限制。在这项试点工作中,也是在文献中首次,我们应用双模 EEG-fMRI NF 对四名具有不同卒中特征和运动障碍严重程度的卒中患者进行上肢卒中恢复。我们还提出了一种新颖的多目标训练方法,引导训练激活同侧初级运动皮质。除了 fMRI 和 EEG 结果外,我们还使用纤维束成像评估皮质脊髓束 (CST) 的完整性。初步结果表明我们的方法可行,并显示出其有可能根据中风缺陷的严重程度诱导同侧运动区域的增强激活。只有两名 CST 和皮质下病变保留的患者成功上调了同侧初级运动皮质,并表现出上肢运动功能改善。这些发现强调了考虑中风患者群体差异的重要性,并使我们能够确定未来临床研究设计的纳入标准。
提出并实验验证了一种灵活的多模态化学传感平台新概念“传感器芯片”。该概念的灵感来自于大规模集成电路 (LSI) 的最新趋势,即通过 LSI“芯片”快速实现高功能性。作为概念验证,通过由两个具有微电极阵列 (MEA) 的平面“传感器芯片”组成的双模态装置展示了 pH 值和白蛋白传感。使用表面微加工、深反应离子刻蚀 (RIE) 和随后的化学功能化,制造、功能化、集成和测试了两个 8 ×16 mm 2 Si 芯片,其中有十三个金 (Au) 和氧化铟锡 (ITO) 微电极,最大电极尺寸为 512 × 512 µm 2。结果表明,提出的概念能够集成多种模式而不会牺牲灵敏度。 关键词
摘要:在本文中,我们在理论上和实验上都研究了双峰干涉传感器的敏感性,其中干涉发生在两个具有不同特性的等离子模式之间,在同一物理波导中传播。与众所周知的Mach- Zehnder干涉测定法(MZI)传感器相反,我们首次表明双峰传感器的灵敏度与传感面积长度无关。通过将理论应用于组成的铝(AL)等离子条纹波导的集成等离子双峰传感器来验证这一点。使用不同长度的等离子条带进行了数字模拟的一系列这种双峰传感器,证明了所有传感器变体的散装折射率(RI)敏感性,证实了理论上的结果。还通过芯片级RI传感实验对三个制造的SU-8/Al Bimodal传感器进行了芯片级RI传感实验,以50、75和100 µm的血浆传感长度进行了实验验证。发现获得的实验性RI敏感性分别非常接近,等于4464、4386和4362 nm/riU,这证实了感应长度对双峰传感器敏感性没有影响。上述结果减轻了设计和光损失约束,为更紧凑,更强大的传感器铺平了道路,可以在超短声感应长度下实现高灵敏度值。
摘要 — 通过比较穿过传感臂和参考臂的光信号,干涉光子传感器使用简单的单波长激光源实现了显著的灵敏度和检测限。原则上,通过比较穿过单个传感波导的两种模式的传播,基于双模波导的传感器可以在不需要参考臂的情况下提供相同的优势。然而,双模传感器的典型实现面临两个挑战:(i) 传感器输入和输出处的突变模式激发和重组效率低下、功率不平衡且产生可能掩盖小传感信号的杂散反射,(ii) 输出信号的正弦性质可能导致读出模糊。这里我们提出了一种螺旋状双模折射率传感器,它具有全模式转换、多路复用和解复用以及相干相位检测,可提供具有紧凑而稳健布局的明确线性相位读出。我们的传感器设计为1550 nm 中心波长,在氮化硅平台上制造,并通过体传感实验验证,检测限达到 1. 67 · 10 −7 RIU。
本研究重点系统研究 Ti 6Al 2Sn 4Zr 2Mo Si 钛合金,并表征 ¡ + ¢ (等轴和双峰) 和 ¡ + ¡ A (双相) 微观结构。它对双相 ( ¡ + ¡ A ) 微观结构的突出优势提供了更多见解,尤其是其出色的加工硬化和强度-延展性平衡。讨论了形成等轴、双峰和双相微观结构所需的热处理条件及其对晶粒尺寸和相比例的影响。它展示了如何通过热处理温度、保温时间和可能的时效过程来控制微观结构参数。研究了这些微观结构因素对每种合金拉伸性能的影响,特别是对强度 (屈服应力、极限拉伸强度)、延展性 (塑性伸长率) 和加工硬化性能的影响。将双相 ( ¡ + ¡ A ) 微观结构与等轴和双峰微观结构进行比较,并展示其优势,突出双相微观结构具有更好的强度-延展性平衡和优异的加工硬化性能。事实上,双相 ( ¡ + ¡ A ) 微观结构的变形微观结构比双峰 ( ¡ + ¢ ) 微观结构表现出更均匀的应变分配。因此,这项工作证明了优化的双相 ( ¡ + ¡ A ) 微观结构在室温下增强拉伸性能的潜力。最后,使用梯度增强回归树的机器学习模型来量化微观结构因素(微观结构类型、晶粒尺寸和相对比率)对机械性能的重要性。[doi:10.2320 / matertrans.MT-MLA2022009]
生物生物体中的触感是一种依赖各种专业受体的教师。这项研究中介绍的双峰传感皮肤,结合了将皮肤归因于机械和热感受器功能的软电阻复合材料。模仿不同自然受体在皮肤层的不同深度中的位置,可以实现软电阻式组合的多层布置。然而,信号响应的大小和刺激的定位能力随双峰皮肤的较轻压力而变化。因此,采用了一种基于学习的方法,可以帮助您对4500探针的刺激进行预测。类似于人脑中的认知功能,两种类型的感觉信息之间的感觉信息的串扰使学习体系结构可以更准确地预测刺激的定位,深度和温度。使用8机械感受器和8个热感应感应元素的定位精度为0.22 mm,温度误差为8.2°C,对于较小的元素间距离实现了。将双模态感测多层皮肤与神经网络学习方法结合起来,使人造触觉界面更接近地模仿生物皮肤的感觉能力。
摘要 — 目标:我们提出了一种轻薄、柔软、可贴合胸部的双模传感器,即胸部电子纹身,它结合了先进的信号处理框架,可准确识别各种心脏事件,从而即使在身体运动期间也能提取心动时间间隔。方法:我们制作了一个无线电子纹身,具有同步心电图 (ECG) 和心震图 (SCG) 功能。SCG 可测量因心跳引起的胸部振动,提供与 ECG 互补的心血管健康信息。然而,运动引起的伪影会影响 SCG 的功效。电子纹身采用轻薄且有弹性的设计,可将其策略性地放置在剑突附近,便于对 ECG 和 SCG 进行高质量监测,从而提高信号质量。九名参与者在步行和骑自行车时接受了测量。我们提出了一个多级信号处理框架,集成了自适应归一化最小均方 (NLMS) 滤波器、集合平均和经验模态分解 (EMD),统称为 FAD 框架,以准确提取心脏时间间隔 (CTI)。结果:关键 CTI,尤其是左心室射血时间 (LVET),被我们的硬件软件系统成功提取,并且即使在大量运动期间也与 FDA 批准的患者监测仪报告的结果高度一致。电子纹身测量的射血前期 (PEP) 也与先前的研究结果一致。结论:双峰胸部电子纹身与 FAD 框架相结合,可在长时间内实现可靠的 CTI 测量