最先进的面部识别系统的性能至关重要的是大规模培训数据集的可用性。然而,如今的收集和分布生物识别数据的收集和分布已经增加,这已经导致了有价值的面部识别数据集的缩回。合成数据的使用代表了一个潜在的解决方案,但是,对训练识别模型有用的保护隐私面部图像的产生仍然是一个空旷的问题。生成方法,但仍与可见光谱绑定。为了解决这些问题,我们提出了一个新颖的身份条件生成框架,能够生成可见和近红外隐私的面部图像的大规模识别数据集。该框架依赖于一种新型的身份条件条件的双分支样式的生成对抗网络,以允许综合由预识别的识别模型的特征确定的一致性高质量样本。此外,该框架结合了一个新颖的过滤器,以防止隐私阐明身份的样本到达生成的数据集并提高身份可分离性和身份内部多样性。对六个公开可用数据集进行的广泛实验表明,我们的框架可以在保留现实世界主题的隐私性的同时获得竞争性合成能力。合成的数据集还比竞争方法甚至小规模的现实世界数据集生成的数据集更加有助于培训更强大的识别模型。使用可见的和近红外数据进行训练,还可以在现实世界可见的频谱基准上提高识别精度。因此,使用多光谱数据的培训可以潜在地改善仅利用可见光谱的现有识别系统,而无需其他传感器。
主要关键词