* 通讯作者。kris.wood@duke.edu。贡献 MA、RSS、OML 和 KCW 概念化了该项目。MA、ML、CFB 和 KCW 负责方法论。MA、ML、HXA、RSS、HMH 和 CFB 进行了体外机制和验证研究 MA、ML、CEE 和 DLK 进行了体内机制和验证研究 MA、CG、CMB、CEM、TGB 和 KCW 对肿瘤标本进行分类和分析 MA、CJF、HAY 和 KCW 进行了肿瘤基因组序列和相关生存分析 数据由 MA 和 KCW 整理 原稿由 MA 和 KCW 撰写 所有作者审阅并编辑了论文。MA 负责可视化。KCW 监督该项目。资金由 MA、HXA、RSS、TGB 和 KCW 获得
* 通讯作者。kris.wood@duke.edu。贡献 MA、RSS、OML 和 KCW 概念化了该项目。MA、ML、CFB 和 KCW 负责方法论。MA、ML、HXA、RSS、HMH 和 CFB 进行了体外机制和验证研究 MA、ML、CEE 和 DLK 进行了体内机制和验证研究 MA、CG、CMB、CEM、TGB 和 KCW 对肿瘤标本进行分类和分析 MA、CJF、HAY 和 KCW 进行了肿瘤基因组序列和相关生存分析 数据由 MA 和 KCW 整理 原稿由 MA 和 KCW 撰写 所有作者审阅并编辑了论文。MA 负责可视化。KCW 监督该项目。资金由 MA、HXA、RSS、TGB 和 KCW 获得
CRISPR/Cas9 介导的基因敲入方法能够标记单个内源性蛋白质,从而如实地确定它们在细胞中的时空分布。然而,由于编辑事件之间存在串扰,因此在神经元中可靠地多路复用基因敲入事件仍然具有挑战性。为了克服这个问题,我们开发了条件性激活基因敲入表达 (CAKE),从而实现高效、灵活和准确的多路复用基因组编辑。为了减少串扰,CAKE 基于顺序重组酶驱动的向导 RNA (gRNA) 表达来控制每个供体序列的基因组整合时间。我们表明,CAKE 广泛应用于大鼠神经元,以共标记各种内源性蛋白质,包括细胞骨架蛋白、突触支架、离子通道和神经递质受体亚基。为了充分利用 CAKE,我们使用超分辨率显微镜解决了内源性突触蛋白的纳米级共分布,表明它们的共组织与突触大小相关。最后,我们引入了可诱导二聚化模块,可精确控制活神经元中的突触受体动力学。这些实验凸显了 CAKE 揭示新生物学见解的潜力。总而言之,CAKE 是一种多功能的多重蛋白质标记方法,可以检测、定位和操纵神经元中的内源性蛋白质。
替代末端连接 (alt-EJ) 机制,例如聚合酶θ介导的末端连接,越来越多地被认为是导致双链断裂修复不准确的重要因素。我们之前提出了一个 alt-EJ 模型,其中双链断裂附近的短 DNA 重复退火形成二级结构,从而引发有限的 DNA 合成。然后,新生的 DNA 与另一个断裂端的微同源序列配对。这种合成依赖性微同源介导的末端连接 (SD-MMEJ) 解释了果蝇 I-SceI 核酸酶切割后恢复的许多 alt-EJ 修复产物。然而,影响 SD-MMEJ 修复的序列特异性因素仍有待充分表征。在这里,我们通过对 1100 种不同序列环境中 Cas9 诱导的双链断裂处的修复产物进行计算分析,扩展了 SD-MMEJ 模型的实用性。我们在单核苷酸分辨率下发现了成功修复 SD-MMEJ 的序列特征的证据。这些特征包括最佳引物重复长度、重复与断裂的距离、引物重复之间的 DNA 序列灵活性以及微同源模板相对于首选引物重复的定位。此外,我们还表明 DNA 聚合酶 theta 是 Cas9 断裂处大多数 SD-MMEJ 修复所必需的。本文描述的分析包括一个计算流程,可用于表征任何序列环境中 alt-EJ 修复的首选机制。
版权所有 © 2022 Droogers 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确署名原始作品。
在第一个减数分裂细胞分裂中摘要,大多数生物体的染色体的适当分离取决于chiasmata,这是源自spo11核酸酶催化的编程双链断裂(DSB)的同源染色体之间的连续性交换。由于DSB会导致生殖细胞无法弥补的损害,而缺乏DSB的染色体也缺乏Chiasmata,因此必须仔细调节DSB的数量既不会太高也不太低。在这里,我们表明,在秀丽隐杆线虫中,减数分裂DSB水平受DSB-1的磷酸调节控制,DSB-1是PP4 PPH-4.1磷酸酶和ATR ATL-1 Kinase的相对活性,DSB-1(酵母SPO11辅助剂REC114)的同源物。PPH-4.1突变体中DSB-1磷酸化的增加与DSB形成的减少相关,而DSB-1磷酸化的预防大大增加了PPH-4.1突变体和野生型背景中的减数分裂DSB的数量。秀丽隐杆线虫及其近亲还具有DSB-1的差异旁系同源物,称为DSB-2,而DSB-2的丢失却可以减少年龄增加的卵母细胞中的DSB形成。我们表明,DSB-1的哲学和灭活形式的比例随着年龄的增长和DSB-2的流失而增加,而不可磷酸化的DSB-1则挽救了DSB-2突变体中DSB的年龄依赖性降低。这些结果表明,DSB-2部分进化以补偿DSB-1通过磷酸化的失活,以维持老年动物的DSB水平。我们的工作表明,PP4 PPH-4.1,ATR ATL-1和DSB-2与DSB-1协同作用,以在整个生殖寿命中促进最佳DSB水平。
经过靶向治疗后仍能存活下来的残留癌细胞,是最终产生耐药性疾病的“储存库”。尽管人们对靶向治疗残留细胞非常感兴趣,但由于我们对这种细胞状态中存在的脆弱性了解有限,因此努力受到了阻碍。本文,我们报告了各种致癌基因靶向疗法,包括表皮生长因子受体 (EGFR)、间变性淋巴瘤激酶 (ALK)、KRAS 和 BRAF 抑制剂,可诱导 DNA 双链断裂,从而诱导致癌基因匹配的残留肿瘤细胞中共济失调毛细血管扩张突变 (ATM) 依赖性 DNA 修复。在细胞系、小鼠异种移植模型和人类患者中观察到的这种 DNA 损伤反应是由涉及激活 caspase 3 和 7 以及下游 caspase 激活的脱氧核糖核酸酶 (CAD) 的途径驱动的。反过来,CAD 又通过 caspase 介导的其内源性抑制剂 ICAD 的降解而激活。因此,在 EGFR 突变型非小细胞肺癌 (NSCLC) 模型中,经小分子 EGFR 靶向疗法治疗后存活下来的肿瘤细胞在合成上依赖于 ATM,而与 ATM 激酶抑制剂联合治疗可在体内消灭这些细胞。这导致 EGFR 突变型 NSCLC 小鼠异种移植模型(包括来自既定细胞系和患者肿瘤的模型)中反应更具渗透性和持久性。最后,我们发现,与没有有害 ATM 突变的 EGFR 突变型 NSCLC 患者相比,携带 ATM 中同时发生的功能丧失突变的罕见 EGFR 突变型 NSCLC 患者在第一代 EGFR 抑制剂治疗中表现出更长的无进展生存期。总之,这些发现为基于机制的 ATM 抑制剂与现有靶向疗法的整合提供了理论依据。
用靶向疗法生存的残留癌细胞充当最终抗性疾病的储层。尽管对靶向残留细胞的治疗非常感兴趣,但由于我们对这种细胞状态中存在的脆弱性的有限了解,努力受到阻碍。Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)–dependent DNA repair in oncogene-matched residual tumor cells.在细胞系,小鼠异种移植模型和人类患者中观察到的这种DNA损伤反应是由涉及胱天蛋白酶3和7激活的途径以及下游caspase激活的脱氧核糖核酸酶(CAD)的驱动的。CAD又通过其内源性抑制剂ICAD的caspase介导的降解而激活。在EGFR突变非小细胞肺癌(NSCLC)的模型中,通过小分子EGFR靶向治疗的肿瘤细胞合成依赖于ATM,并与ATM激酶抑制剂在体内消除这些细胞。这导致EGFR突变体NSCLC小鼠异种移植模型的渗透性和耐用反应更多,包括源自已建立的细胞系和患者肿瘤的响应。最后,我们发现,具有携带共同发生的EGFR突变体NSCLC的罕见患者,ATM中的功能丧失突变在第一代EGFR抑制剂疗法中与EGFR突变NSCLC患者缺乏缺乏有害ATM突变的患者相对于第一代EGFR抑制剂疗法表现出扩展的无进展生存率。一起,这些发现为基于机制的ATM抑制剂与现有靶向疗法的基于机制的整合建立了理由。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
CRISPR 相关核酸酶是精确编辑模型系统(包括人类类器官)基因组的有力工具。目前描述类器官中荧光基因标记的方法依赖于 DNA 双链断裂 (DSB) 的产生,以刺激同源定向修复 (HDR) 或非同源末端连接 (NHEJ) 介导的所需敲入整合。DSB 介导的基因组编辑的一个主要缺点是需要克隆选择和扩增候选类器官以验证目标基因座的基因组完整性并确认没有脱靶插入/缺失。相比之下,基因组位点和靶向载体的同时切口,称为反式配对切口 (ITPN),可刺激有效的 HDR 介导的基因组编辑以产生大量敲入而不会引入 DSB。在这里,我们表明 ITPN 可以在人类正常和癌症类器官中实现快速、高效且无插入/缺失的荧光基因标记。为了突出 ITPN 的简便性和效率,我们生成了三重荧光敲入类器官,其中 3 个基因组位点在单轮靶向中同时被修改。此外,我们通过一步差异化修改母系和父系等位基因,生成了具有等位基因特异性读数的模型系统。ITPN 使用我们的靶向载体调色板(可从 Addgene 公开获得),非常适合在人类类器官中生成无错误的杂合敲入。